
Intel® Itanium® 2 Processor
Reference Manual
For Software Development and Optimization

April 2003

Order Number: 251110-002

ii Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Itanium® architecture processors and IA-32 Intel® architecture processors may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's web site at http://www.intel.com.

Intel, Itanium, Pentium, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2002-2003, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Contents
1 About this Manual..1-1

1.1 Overview ..1-1
1.2 Contents ...1-1
1.3 Terminology..1-2
1.4 Related Documentation..1-2
1.5 Revision History ...1-3

2 Itanium® 2 Processor Enhancements ...2-1

2.1 Implemented Instructions ...2-1
2.2 Functional Units and Issue Rules...2-1
2.3 Operation Latencies ...2-1
2.4 Data Operations ...2-2

2.4.1 Data Speculation and the ALAT ..2-2
2.4.2 Data Alignment..2-2
2.4.3 Control Speculation ...2-4

2.5 Memory Hierarchy ..2-4
2.6 Branch Prediction ...2-6
2.7 Instruction Prefetching..2-6

3 Functional Units and Issue Rules..3-1

3.1 Execution Model...3-1
3.2 Number and Types of Functional Units ..3-1
3.3 Instruction Slot to Functional Unit Mapping..3-2

3.3.1 Execution Width ..3-4
3.3.2 Dispersal Rules ...3-5
3.3.3 Split Issue and Bundle Types..3-7

4 Latencies and Bypasses ...4-1

4.1 Control and Data Speculation Penalties...4-1
4.2 Branch Related Latencies and Penalties ...4-1
4.3 Latencies for OS Related Instructions..4-2

5 Data Operations ..5-1

5.1 Data Speculation and the ALAT...5-1
5.1.1 Allocation/Replacement Policy ..5-2
5.1.2 Rules and Special Cases ..5-2

5.2 Speculative and Predicated Loads/Stores ...5-2
5.3 Floating-Point Loads ..5-4
5.4 Data Cache Prefetching and Load Hints ..5-4

5.4.1 lfetch Implementation ..5-4
5.4.2 Load Temporal Locality Completers..5-5

5.5 Data Alignment...5-6
5.6 Write Coalescing ..5-7

5.6.1 WC Buffer Eviction Conditions ..5-7
5.6.2 WC Buffer Flushing Behavior ..5-7

5.7 Register Stack Engine..5-8
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization iii

6 Memory Subsystem ..6-1

6.1 Translation Lookaside Buffers..6-2
6.1.1 Instruction TLBs ..6-2
6.1.2 Data TLBs ...6-2

6.2 Hardware Page Walker ..6-3
6.3 Cache Summary ..6-4
6.4 First-Level Instruction Cache ...6-4
6.5 Instruction Stream Buffer ...6-5
6.6 First-Level Data Cache ..6-5

6.6.1 L1D Loads...6-6
6.6.2 L1D Stores ..6-6
6.6.3 L1D Load and Store Considerations ...6-7
6.6.4 L1D Misses ...6-8

6.7 Second-Level Unified Cache..6-9
6.7.1 L1D Requests to L2 ..6-10
6.7.2 L2 OzQ..6-10
6.7.3 L2 Cancels ..6-12
6.7.4 L2 Recirculate ...6-13
6.7.5 Memory Ordering ..6-14
6.7.6 L2 Instruction Prefetch FIFO ...6-14
6.7.7 L2 Load and Store Considerations..6-15

6.8 System Bus/L3 Interactions ...6-15
6.9 Third-Level Unified Cache..6-16
6.10 System Bus ..6-17

7 Branch Instructions and Branch Prediction ...7-1

7.1 Branch Prediction Hints..7-2
7.2 Indirect Branches ...7-2
7.3 Perfect Loop Prediction..7-3

8 Instruction Prefetching ..8-1

8.1 Streaming Prefetching..8-1
8.2 Hint Prefetching..8-2
8.3 Prefetch Flush Hints ...8-3
8.4 The brl Instruction ..8-3

9 Optimizing for the
Itanium® 2 Processor9-1

9.1 Hints for Scheduling ...9-1
9.2 Optimal Use of lfetch..9-1
9.3 Data Streaming ..9-2

9.3.1 Floating-Point Data Streams ...9-2
9.3.2 Integer Data Streams ..9-3
9.3.3 Store Data Streams...9-3

9.4 Control and Data Speculation ..9-4
9.5 Known L2 Miss Bundle Placement...9-4
9.6 Avoid Known L2 Cancel and Recirculate Conditions ...9-4
9.7 Instruction Bundling..9-4
9.8 Branches ..9-5

9.8.1 Single Cycle Branches ..9-5
9.8.2 Perfect Loop Prediction...9-5
iv Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

9.8.3 Branch Targets..9-5

10 Performance Monitoring ..10-1

10.1 Introduction...10-1
10.2 Performance Monitor Programming Models...10-1

10.2.1 Workload Characterization ..10-2
10.2.2 Profiling ...10-5
10.2.3 Event Qualification ..10-7
10.2.4 References ..10-12

10.3 Performance Monitor State ..10-12
10.3.1 Performance Monitor Control and Accessibility.................................10-15
10.3.2 Performance Counter Registers..10-16
10.3.3 Performance Monitor Overflow Status Registers (PMC0,1,2,3)10-18
10.3.4 Opcode Match Check (PMC8,9,15) ..10-18
10.3.5 Instruction Address Range Matching ..10-21
10.3.6 Data Address Range Matching (PMC13) ..10-23
10.3.7 Event Address Registers (PMC10,11/PMD0,1,2,3,17)10-24
10.3.8 Data EAR (PMC11, PMD2,3,17) ...10-27
10.3.9 Branch Trace Buffer ..10-31
10.3.10 Interrupts ...10-36
10.3.11 Processor Reset, PAL Calls, and Low Power State..........................10-36

11 Performance Monitor Events...11-1

11.1 Introduction...11-1
11.2 Categorization of Events ..11-1
11.3 Basic Events...11-2
11.4 Instruction Dispersal Events...11-3
11.5 Instruction Execution Events ..11-3
11.6 Stall Events ..11-4
11.7 Branch Events ..11-5
11.8 Memory Hierarchy ..11-6

11.8.1 L1 Instruction Cache and Prefetch Events ..11-8
11.8.2 L1 Data Cache Events ..11-9
11.8.3 L2 Unified Cache Events ...11-11
11.8.4 L3 Cache Events ...11-15

11.9 System Events ...11-16
11.10 TLB Events...11-16
11.11 System Bus Events ..11-18
11.12 RSE Events ..11-21
11.13 Performance Monitors Ordered by Event Code ...11-22
11.14 Performance Monitor Event List ...11-28

12 Model-Specific and
Optional Features12-1

12.1 Memory Attributes ..12-1
12.2 Purge Behavior of ptc.e..12-1
12.3 Data Debug Break..12-1
12.4 CPUID Values ..12-1

A Itanium® 2 Processor Pipeline ... A-1

A.1 Core Pipeline... A-1
A.2 Pipeline Stages ... A-1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization v

A.2.1 IPG STAGE.. A-1
A.2.2 ROT STAGE .. A-2
A.2.3 EXP STAGE... A-2
A.2.4 REN STAGE .. A-2
A.2.5 REG Stage ... A-2
A.2.6 EXE Stage.. A-2
A.2.7 DET Stage.. A-2
A.2.8 WRB Stage .. A-2

A.3 Instruction Buffer (IB) .. A-3
A.4 Micro-Pipelines.. A-3

A.4.1 FPU Micro-Pipeline .. A-3
A.4.2 L1D Micro-Pipeline... A-3
A.4.3 L2 Micro-Pipeline ... A-3

Figures

6-1 Three Level Cache Hierarchy of the Itanium® 2 Processor6-1
10-1 Time-Based Sampling ..10-2
10-2 Itanium® Processor Family Cycle Accounting..10-4
10-3 Event Histogram by Program Counter ...10-5
10-4 Itanium® 2 Processor Event Qualification ..10-8
10-5 Instruction Tagging Mechanism in the Itanium® 2 Processor10-9
10-6 Single Process Monitor ..10-11
10-7 Multiple Process Monitor..10-11
10-8 System Wide Monitor ...10-12
10-9 Itanium® 2 Processor Performance Monitor Register Mode10-14
10-10 Processor Status Register (PSR) Fields for Performance Monitoring10-15
10-11 Itanium® 2 Processor Generic PMC Registers (PMC4,5,6,7)10-16
10-12 Itanium® 2 Processor Generic PMD Registers (PMD4,5,6,7)10-17
10-13 Itanium® 2 Processor Performance Monitor Overflow Status Registers

(PMC0,1,2,3) ..10-18
10-14 Opcode Match Registers (PMC8,9) ...10-19
10-15 Opcode Match Configuration Register (PMC15)..10-19
10-16 Instruction Address Range Configuration Register (PMC14).........................10-21
10-17 Memory Pipeline Event Constraints Configuration Register (PMC13)10-24
10-18 Instruction Event Address Configuration Register (PMC10)10-25
10-19 Instruction Event Address Register Format (PMD0,1)10-25
10-20 Data Event Address Configuration Register (PMC11)10-27
10-21 Data Event Address Register Format (PMD2,3,17)10-28
10-22 Branch Trace Buffer Configuration Register (PMC12)10-32
10-23 Branch Trace Buffer Register Format (PMD8-15, where PMC12.ds == 0).....10-33
10-24 Branch Trace Buffer Register Format (PMD8-15, where PMC12.ds == 1).....10-33
10-25 Branch Trace Buffer Index Register Format (PMD16)10-35
11-1 Event Monitors in the Itanium® 2 Processor Memory Hierarchy11-7
A-1 Core Pipeline of the Itanium® 2 Processor.. A-1
vi Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Tables

2-1 Itanium® 2/ Itanium Processors Operation Latencies ..2-3
2-2 L1I Cache Differences..2-4
2-3 L1D Cache Differences ..2-4
2-4 L2 Unified Cache Differences...2-5
2-5 L3 Cache Differences...2-5
2-6 Instruction TLB Differences..2-5
2-7 Data TLB Differences...2-6
2-8 Branch Prediction Latencies (in cycles) ...2-6
3-1 A-Type Instruction Port Mapping..3-3
3-2 I-Type Instruction Port Mapping ...3-3
3-3 M-Type Instruction Port Mapping ...3-3
3-4 Dual Issue Bundle Types ...3-6
4-1 Speculative Load Recovery Latencies ...4-1
4-2 Branch Prediction Latencies...4-1
4-3 Execution with Bypass Latency Summary ...4-2
4-4 Latencies for OS Related Instructions..4-3
5-1 ALAT Entry Comparison Sizes...5-1
5-2 Early and Late Deferral ..5-3
5-3 Control Speculation Penalties ..5-3
5-4 Processor Cache Hints...5-5
5-5 Itanium® 2 Processor WCB Eviction Conditions ..5-7
6-1 Itanium® 2 Processor Virtual Memory Support ..6-1
6-2 Major Features of Instruction and Data TLBs...6-2
6-3 Best Case HPW Penalties..6-3
6-4 Cache Summary...6-4
6-5 Store to Load Forwarding Penalties ...6-8
6-6 L2 Issue Priorities...6-15
6-7 Effective Release Operations...6-15
6-8 System Bus/L3 Requests and Final L2 State...6-16
7-1 Branch Prediction Latencies...7-1
8-1 Summary of Streaming Prefetch Actions ...8-2
8-2 Prefetch Mechanisms...8-2
10-1 Average Latency per Request and Requests per

CycleCalculation Example..10-3
10-2 Itanium® 2 Processor EARs and Branch Trace Buffer10-6
10-3 Itanium® 2 Processor Event Qualification Modes ..10-10
10-4 Itanium® 2 Processor Performance Monitor Register Set10-13
10-5 Performance Monitor PMC Register Control Fields

(PMC4,5,6,7, 0,11,12) ..10-15
10-6 Itanium® 2 Processor Generic PMC Register Fields

(PMC4,5,6,7) ..10-16
10-7 Itanium® 2 Processor Generic PMD Register Fields......................................10-17
10-8 Itanium® 2 Processor Performance Monitor Overflow Register Fields

(PMC0,1,2,3) ..10-18
10-9 Opcode Match Register Fields (PMC8,9)...10-19
10-10 Opcode Match Configuration Register Fields (PMC15)10-20
10-11 Itanium® 2 Processor Instruction Address Range Check by Instruction Set ..10-21
10-12 Instruction Address Range Configuration Register Fields (PMC14)10-22
10-13 Memory Pipeline Event Constraints Fields (PMC13)10-23
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization vii

10-14 Instruction Event Address Configuration Register Fields (PMC10)10-25
10-15 Instruction EAR (PMC10) umask Field in Cache Mode (PMC10.ct=’1x)10-26
10-16 Instruction EAR (PMD0,1) in Cache Mode (PMC10.ct=’1x)...........................10-26
10-17 Instruction EAR (PMC10) umask Field in TLB Mode (PMC10.ct=00)............10-26
10-18 Instruction EAR (PMD0,1) in TLB Mode (PMC10.ct=‘00)10-27
10-19 Data Event Address Configuration Register Fields (PMC11)10-27
10-20 Data EAR (PMC11) Umask Fields in Data Cache Mode

(PMC11.mode=00)...10-28
10-21 PMD2,3,17 Fields in Data Cache Load Miss Mode (PMC11.mode=00)10-29
10-22 Data EAR (PMC11) Umask Field in TLB Mode (PMC10.ct=01)10-30
10-23 PMD2,3,17 Fields in TLB Miss Mode (PMC11.mode=‘01).............................10-30
10-24 PMD2,3,17 Fields in ALAT Miss Mode (PMC11.mode=‘1x)10-31
10-25 Branch Trace Buffer Configuration Register Fields (PMC12)10-32
10-26 Branch Trace Buffer Register Fields (PMD8-15) ...10-34
10-27 Branch Trace Buffer Index Register Fields (PMD16)10-35
10-28 Information Returned by PAL_PERF_MON_INFO for the Itanium® 2

Processor ...10-37
11-1 Performance Monitors for Basic Events ...11-2
11-2 Derived Monitors for Basic Events ...11-2
11-3 Performance Monitors for Instruction Dispersal Events11-3
11-4 Performance Monitors for Instruction Execution Events11-4
11-5 Derived Monitors for Instruction Execution Events ..11-4
11-6 Performance Monitors for Stall Events...11-5
11-7 Performance Monitors for Branch Events ..11-6
11-8 Performance Monitors for L1 Instruction Cache and Prefetch Events11-8
11-9 Derived Monitors for L1 Instruction Cache and Prefetch Events11-9
11-10 Performance Monitors for L1 Data Cache Events..11-9
11-11 Performance Monitors for L1D Cache Set 0 ..11-10
11-12 Performance Monitors for L1D Cache Set 1 ..11-10
11-13 Performance Monitors for L1D Cache Set 2 ..11-10
11-14 Performance Monitors for L1D Cache Set 3 ..11-10
11-15 Performance Monitors for L1D Cache Set 4 ..11-11
11-16 Performance Monitors for L2 Unified Cache Events11-11
11-17 Derived Monitors for L2 Unified Cache Events ..11-12
11-18 Performance Monitors for L2 Cache Set 0...11-13
11-19 Performance Monitors for L2 Cache Set 1...11-13
11-20 Performance Monitors for L2 Cache Set 2...11-13
11-21 Performance Monitors for L2 Cache Set 3...11-14
11-22 Performance Monitors for L2 Cache Set 4...11-14
11-23 Performance Monitors for L2 Cache Set 5...11-14
11-24 Performance Monitors for L3 Unified Cache Events11-15
11-25 Derived Monitors for L3 Unified Cache Events ..11-15
11-26 Performance Monitors for System Events..11-16
11-28 Performance Monitors for TLB Events ...11-17
11-29 Derived Monitors for TLB Events ...11-17
11-30 Performance Monitors for System Bus Events ..11-18
11-32 Conventions for System Bus Transactions ..11-21
11-33 Bus Events by Snoop Response..11-21
11-34 Performance Monitors for RSE Events ..11-21
11-35 Derived Monitors for RSE Events ..11-22
11-36 All Performance Monitors Ordered by Code ..11-22
11-37 Unit Masks for ALAT_CAPACITY_MISS ...11-28
viii Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

11-38 Unit Masks for BACK_END_BUBBLE..11-28
11-39 Unit Masks for BE_BR_MISPREDICT_DETAIL...11-29
11-40 Unit Masks for BE_EXE_BUBBLE ...11-29
11-41 Unit Masks for BE_FLUSH_BUBBLE...11-30
11-42 Unit Masks for BE_L1D_FPU_BUBBLE...11-30
11-43 Unit Masks for BE_LOST_BW_DUE_TO_FE ..11-31
11-44 Unit Masks for BE_RSE_BUBBLE...11-32
11-45 Unit Masks for BR_MISPRED_DETAIL ...11-33
11-46 Unit Masks for BR_MISPREDICT_DETAIL2..11-34
11-47 Unit Masks for BR_PATH_PRED...11-35
11-48 Unit Masks for BR_PATH_PRED2...11-36
11-49 Unit Masks for BUS_ALL..11-37
11-50 Unit Masks for BUS_BACKSNP_REQ...11-37
11-51 Unit Masks for BUS_IO ..11-38
11-52 Unit Masks for BUS_LOCK ..11-39
11-53 Unit Masks for BUS_MEMORY..11-39
11-54 Unit Masks for BUS_MEM_READ..11-40
11-55 Unit Masks for BUS_RD_DATA ...11-42
11-56 Unit Masks for BUS_RD_IO...11-43
11-57 Unit Masks for BUS_RD_PRTL..11-43
11-58 Unit Masks for BUS_SNOOPS...11-44
11-59 Unit Masks for BUS_SNOOPS_HITM..11-44
11-60 Unit Masks for BUS_SNOOP_STALL_CYCLES..11-45
11-61 Unit Masks for BUS_WR_WB ..11-45
11-62 Unit Masks for ENCBR_MISPRED_DETAIL..11-48
11-63 Unit Masks for EXTERN_DP_PINS_0_TO_3 ..11-48
11-64 Unit Masks for EXTERN_DP_PINS_4_TO_5 ..11-49
11-65 Unit Masks for FE_BUBBLE...11-49
11-66 Unit Masks for FE_LOST_BW..11-50
11-67 Unit Masks for IA64_INST_RETIRED..11-52
11-68 Unit Masks for IA64_TAGGED_INST_RETIRED...11-53
11-69 Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE....................................11-53
11-70 Unit Masks for INST_CHKA_LDC_ALAT...11-54
11-71 Unit Masks for INST_FAILED_CHKA_LDC_ALAT ..11-54
11-72 Unit Masks for INST_FAILED_CHKS_RETIRED...11-55
11-73 Unit Masks for ITLB_MISSES_FETCH ..11-55
11-74 Unit Masks for L1D_READ_MISSES ...11-57
11-75 Unit Masks for L1I_PREFETCH_STALL..11-58
11-76 Unit Masks for L2_BAD_LINES_SELECTED...11-60
11-77 Unit Masks for L2_BYPASS...11-60
11-78 Unit Masks for L2_DATA_REFERENCES ...11-61
11-79 Unit Masks for L2_FILLB_FULL...11-62
11-80 Unit Masks for L2_FORCE_RECIRC...11-62
11-81 Unit Masks for L2_GOT_RECIRC_IFETCH...11-63
11-82 Unit Masks for L2_IFET_CANCELS...11-64
11-83 Unit Masks for L2_ISSUED_RECIRC_IFETCH ...11-65
11-84 Unit Masks for L2_L3ACCESS_CANCEL ..11-65
11-85 Unit Masks for L2_OPS_ISSUED ..11-66
11-86 Unit Masks for L2_OZDB_FULL...11-67
11-87 Unit Masks for L2_OZQ_CANCELS0...11-67
11-88 Unit Masks for L2_OZQ_CANCELS1...11-68
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization ix

11-89 Unit Masks for L2_OZQ_CANCELS2 ..11-69
11-90 Unit Masks for L2_OZQ_FULL...11-69
11-91 Unit Masks for L2_STORE_HIT_SHARED ..11-70
11-92 Unit Masks for L2_VICTIMB_FULL..11-71
11-93 Unit Masks for L3_READS...11-71
11-94 Unit Masks for L3_WRITES ...11-72
11-95 Unit Masks for MEM_READ_CURRENT ...11-73
11-96 Unit Masks for RSE_REFERENCES_RETIRED ...11-76
11-97 Unit Masks for SYLL_NOT_DISPERSED ..11-77
11-98 Unit Masks for SYLL_OVERCOUNT ...11-77
12-1 Itanium® 2 Processor CPUID Register 3 Values..12-2
12-2 Itanium® 2 Processor Family and Model Values..12-2
12-3 Itanium® 2 Processor CPUID Register 4 Values..12-2
12-4 Encoding of IA-32 CPUID Cache Return Values ...12-2
A-1 FPU Pipeline ... A-3
A-2 L1D Micro-Pipeline.. A-3
A-3 L2 Micro-Pipeline .. A-3
x Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

About this Manual 1

1.1 Overview

The Intel® Itanium® 2 processor is the second implementation of the Intel® Itanium® architecture
and is available in the following varieties:

• Itanium® 2 Processor with 1.5M L3 Cache

• Itanium® 2 Processor 1GHz with 3M L3 Cache

• Itanium® 2 Processor 1.30GHz with 3M L3 Cache

• Itanium® 2 Processor with 4M L3 Cache

• Itanium® 2 Processor with 6M L3 Cache

• Low Voltage Itanium® 2 Processor

This document describes how the Itanium 2 processor implements features of the Itanium
architecture, as well as specific features of the Itanium 2 processor that are relevant to performance
tuning, compilation, and assembler programming. Unless otherwise stated, all of the restrictions,
rules, sizes, and capacities described in this document apply specifically to the Itanium 2 processor
and may not apply to other implementations of the Itanium architecture.

General understanding of processor components and explicit familiarity with Itanium instructions
are assumed. This document is not intended to be used as an architectural reference for the Itanium
architecture. For more information on the Itanium architecture, consult the Intel® Itanium®
Architecture Software Developer’s Manual.

1.2 Contents

Chapter 2, “Itanium® 2 Processor Enhancements” compares the Itanium processor and the
Itanium 2 processor, highlighting some of the considerations that should be taken when optimizing
for the Itanium 2 processor.

Chapter 3, “Functional Units and Issue Rules” describes the number and type of available
functional units, instruction issue rules, and heuristics for efficient instruction scheduling based
upon machine resources and issue rules.

Chapter 4, “Latencies and Bypasses” describes latencies and bypasses for execution of the different
instruction types on the Itanium 2 processor.

Chapter 5, “Data Operations” describes considerations for data operations such as speculative or
predicated loads or stores, floating-point loads, and prefetches. Data alignment considerations are
also discussed.

Chapter 6, “Memory Subsystem” provides an overview of the memory subsystem hierarchy on the
Itanium 2 processor.

Chapter 7, “Branch Instructions and Branch Prediction” describes how hints for branch prediction
and instruction prefetch are implemented on the Itanium 2 processor.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 1-1

About this Manual
Chapter 8, “Instruction Prefetching” describes how prefetching is implemented on the Itanium 2
processor.

Chapter 9, “Optimizing for the Itanium® 2 Processor” is a summary that draws conclusions from
important points noted in earlier chapters.

Chapter 10, “Performance Monitoring” discusses performance monitoring registers and
implementations specific to the Itanium 2 processor.

Chapter 11, “Performance Monitor Events” summarizes the Itanium 2 processor events and
describes how to compute commonly used performance metrics.

Chapter 12, “Model-Specific and Optional Features” discusses Itanium 2 processor model-specific
behavior, such as executing CPUID instructions.

1.3 Terminology

The following definitions are for terms that will be used throughout this document:

Dispersal The process of mapping instructions within bundles to
functional units.

Bundle rotation The process of bringing new bundles into the two-bundle
issue window.

Split issue Instruction execution when an instruction does not issue at
the same time as the instruction immediately before it.

Advanced load address table (ALAT) The ALAT holds the state necessary for advanced load and
check operations.

Translation lookaside buffer (TLB) The TLB holds virtual to physical mappings.

Virtual hash page table (VHPT The VHPT is an extension of the TLB hierarchy, which
resides in the virtual memory space, is designed to enhance
virtual address translation performance.

Hardware page walker (HPW) The HPW is the third level of address translation. It is an
engine that performs page look-ups from the VHPT and
seeks opportunities to insert translations into the processor
TLBs.

Register stack engine (RSE) The RSE moves registers between the register stack and
the backing store in memory.

Event address registers (EARs) The EARs record the instruction and data addresses of data
cache misses.

1.4 Related Documentation

The reader of this document should also be familiar with the material and concepts presented in the
following documents:

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application
Architecture

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture
1-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

About this Manual
• Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference

1.5 Revision History

Revision
Number Description Date

-001 Public release of the document. June 2002

-002 Refresh to incorporate new Itanium® 2 processor models. April 2003
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 1-3

About this Manual
1-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Itanium® 2 Processor Enhancements 2

This chapter outlines the major differences between the Itanium 2 processor and the Itanium

processor. This is not an exhaustive list, so a reference to more details accompanies each topic.

2.1 Implemented Instructions

The Itanium 2 processor implements the 64-bit long branch instruction (brl) instruction directly
in hardware. This instruction was not implemented in the Itanium processor. It allows programmers
to direct a branch to an address that uses all 64 address bits. Details on the brl instruction can be
found in Section 3.3.2 and Section 7.2.1 in Volume 2 of the Intel® Itanium® Architecture Software
Developer’s Manual. There are some branch prediction performance implications associated with
the brl instruction which are noted in Chapter 7, “Branch Instructions and Branch Prediction.”

2.2 Functional Units and Issue Rules

In general, the Itanium 2 processor has more functional units than the Itanium processor.

• In particular, the Itanium 2 processor has 6 arithmetic logic units (ALUs) to perform arithmetic
operations, compares, most multimedia instructions, etc. The Itanium processor can only issue
four of these types of instructions per cycle.

• The Itanium 2 processor has four memory ports allowing two integer loads and two integer
stores per cycle. The Itanium processor has two memory ports.

• The Itanium 2 processor can issue one SIMD floating-point (FP) instruction per cycle. The
Itanium processor can issue two SIMD FP instructions per cycle.

• Under certain conditions, the Itanium 2 processor can issue I-type instructions to memory
functional units, thus increasing the number of template pair types which can be issued in one
cycle. For the Itanium processor, I-type instructions will only be issued to integer functional
units.

• The Itanium 2 processor scoreboards multi-cycle operations such as first-level instruction
cache (L1D) misses, multimedia, and floating-point operations.

This means that when an integer operation uses the result of a multimedia operation and the
integer operation is not scheduled to cover the latency, the dependent instruction group will
wait until the multimedia data is available.

A predicated off operation, with a use of a scoreboarded operand, will stall the issue group for
one cycle if the predicate was generated in the previous cycle. A predicated off instruction
with predicates generated two or more cycles earlier will not incur pipeline stalls even when
operands are scoreboarded.

2.3 Operation Latencies

On the Itanium 2 processor, most latencies are the same or shorter than on the Itanium processor
with a few exceptions, i.e. memory latencies are shorter, floating-point latencies are shorter. A few
more bypasses exist which remove some asymmetries. Table 2-1, “Itanium® 2/ Itanium Processors
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 2-1

Itanium® 2 Processor Enhancements
Operation Latencies” shows latencies for both the Itanium 2 processor and the Itanium processor.
The areas of difference are indicated by non-shaded boxes. The two different latency numbers are
separated by a forward-slash or ‘/’. When reading from left to right, the first latency number
corresponds to the Itanium 2 processor and the second number corresponds to the Itanium
processor.

2.4 Data Operations

2.4.1 Data Speculation and the ALAT

The Itanium 2 processor advanced load address table (ALAT) is fully associative while the Itanium
processor ALAT is two-way associative.

On the Itanium processor, a ld.c which misses the ALAT causes a 10-cycle pipeline flush. On the
Itanium 2 processor, the penalty is 8 cycles.

On the Itanium processor, if a chk.a, chk.s, or fchkf fails, an operating system (OS) handler
will be invoked through a trap handler to steer execution to the recovery code at the location
specified in the target field of the chk.a/chk.s/fchkf instruction. On the Itanium 2 processor,
hardware will usually perform the resteer without operating system intervention. This reduces the
resteer cost from approximately 200 cycles to 18 cycles. If any of the following conditions are not
met, the Itanium 2 processor will trap to the OS to service the chk.a/chk.s/fchkf:

psr.ic = 1

psr.it = 1

psr.ss = 0

psr.tb = 0

If a chk.a follows a store within the same cycle, the chk.a will always fail on the Itanium
processor. On the Itanium 2 processor, a 12-bit address compare against ALAT entries will occur.
See Section 5.1, “Data Speculation and the ALAT” for more details.

2.4.2 Data Alignment

The Itanium processor can support misaligned integer accesses within 16-byte blocks; however, the
Itanium 2 processor supports misaligned integer accesses within 8-byte blocks. Section 5.5, “Data
Alignment” has greater detail on misaligned access support for the Itanium 2 processor.
2-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Itanium® 2 Processor Enhancements
Table 2-1. Itanium® 2/ Itanium Processors Operation Latencies

Consumer

Qual.
Pred.

Branch
Pred. ALU

Load
Store
Addr

Multi-
media

Store
Data Fmac Fmisc getf setf

P
ro

du
ce

r

Adder: add, cmp, tbit,
addp4, shladd,
shladdp4, sum,
logical ops, 64-bit
immed. moves, movl,
post-inc ops
(includes post-inc
stores, loads,
lfetches)

n/a n/a 1 1/(1-2)1 3 1 n/a n/a n/a 1

Multimedia n/a n/a 3 3 2 3 n/a n/a n/a 3

getf n/a n/a 5/9 6/9 6/9 5/9 n/a n/a n/a 6/9

setf n/a n/a n/a n/a n/a 6/2 6/2 6/2 6/2 n/a

Fmac: fma, fms,
fnma, fpma, fpms,
fpnma, fadd, fnmpy,
fsub, fpmpy, fpnmpy,
fmpy, fnorm, xma,
frcpa, fprcpa, frsqrta,
fpsqrta, fcvt, fpcvt

n/a n/a n/a n/a n/a 4/5 4/5 4/5 4/5 n/a

Fmisc: fselect, fcmp,
fclass, fmin, fmax,
famin, famax, fpmin,
fpmax, fpamin,
fpcmp, fmerge, fmix,
fsxt, fpack, fswap,
fand, fandcm, for,
fxor, fpmerge, fneg,
fnegabs, fpabs,
fpneg, fpnegabs

n/a n/a n/a n/a n/a 4/5 4/5 4/5 4/5 n/a

INT side predicate
write: cmp, tbit, tnat

1 0 n/a n/a n/a n/a n/a n/a n/a n/a

FP side predicate
write: fcmp

2 1/1 n/a n/a n/a n/a n/a n/a n/a n/a

FP side predicate
write: frcpa, fprcpa,
frsqrta, fpsqrta

2 2 n/a n/a n/a n/a n/a n/a n/a n/a

Int Load2 n/a n/a N N+1 N+1 N N N N N

FP Load3 n/a n/a M+1 M+2 M+2 M+1 M+1 M+1 M+1 M+1

IEU2: move_from_br,
alloc

n/a n/a 2 2 3 2 n/a n/a n/a 2

Move to/from cr,ar4 n/a n/a C C C C n/a n/a n/a C

Move to pr 1 0 2 2 3 2 n/a n/a n/a n/a

Move indirect5 n/a n/a D D D D n/a n/a n/a D

1. On the Itanium® processor, the address computation instruction must be in an M-slot type to avoid an extra cycle of latency.
2. N depends upon which level of cache is hit. For the Itanium processor, N=2 for L1D, N=6 for L2, N=21 for L3. For the Itanium 2 processor, N=1 for

L1D, N=5 for L2, N=(12-15) for L3. These are minimum latencies.
3. M depends upon which level of cache is hit. For the Itanium processor, M=8 for L2 and M=24 for L3. For the Itanium 2 processor, M=5 for L2 and

M=(12-15) for L3. These are minimum latencies. The “+1” entries indicate one cycle is needed for format conversion.
4. Best-case values of C range from 2 to 35 cycles depending upon registers accessed. EC and LC accesses are 2 cycles. FPSR and CR accesses

are 10-12 cycles.
5. Best-case values of D range from 6 to 35 cycles depending upon indirect registers accessed; Iregs pkr and rr accesses are faster at 6 cycles.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 2-3

Itanium® 2 Processor Enhancements
2.4.3 Control Speculation

The Itanium 2 processor implements features intended to increase the performance of applications
by decreasing the cost for incorrect control speculation. There are two parts of the solution for the
Itanium 2 processor:

• The first part allows speculative load operations (This includes lfetch without the .fault
completer.) to abort and set a NaT bit at the time of a data translation lookaside buffer (TLB)
miss. In contrast, the Itanium processor would wait for the hardware page walker (HPW)
operation to complete the walk before setting the NaT bit.

• The second part allows for a chk.s instruction (also for a fchkf/chk.a instruction) to
branch directly to the fix-up code without involving the OS. The Itanium processor faults on a
chk.s, chk.a, or fchkf instruction and requests that the OS branch to the fix-up code.

Thus, deferrals on the Itanium 2 processor occur quickly and the branch to fix-up code occurs
quickly.

The deferral at data TLB miss is turned off inside interrupt handlers (when PSR.is = 1), which
allows ld.s and lfetch instructions to complete a TLB walk and possibly return data. Clearing
the dcr.dm bit will also prevent speculative operations from deferring at data TLB miss. Fast
deferral requires the dcr.dm bit to be set. Refer to Section 5.2, “Speculative and Predicated
Loads/Stores” for more information.

2.5 Memory Hierarchy

Both the Itanium microarchitecture and the Itanium 2 microarchitecture incorporate a three-level
cache structure. In general, line sizes of the Itanium 2 processor are twice as large as those of the
Itanium processor. Also, latencies of the Itanium 2 processor are shorter that those of the Itanium
processor. The third-level cache (L3) of the Itanium 2 processor is on-chip and runs at a higher core
frequency, which results in a much shorter latency. The Itanium 2 processor has a two-level TLB
design for both instruction and data, while the Itanium processor has a single-level instruction
TLB. The Itanium 2 processor’s TLBs are larger. The following tables list some of the differences
in caches and TLBs. Details can be found in Chapter 6, “Memory Subsystem.”

.

.

Table 2-2. L1I Cache Differences

Size Line Size Associativity Latency

Itanium® Processor 16 KB 32 bytes 4-way 1 cycle

Itanium® 2 Processor 16 KB 64 bytes 4-way 1 cycle

Low Voltage Itanium® 2
Processor

16 KB 64 bytes 4-way 1 cycle

Table 2-3. L1D Cache Differences

Size Line Size Associativity Latency Write Policies

Itanium® Processor
16 KB 32 bytes 4-way 2 cycles Write through,

No write
allocate
2-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Itanium® 2 Processor Enhancements
Itanium® 2 Processor
16 KB 64 bytes 4-way 1 cycle Write through,

No write
allocate

Low Voltage Itanium® 2
Processor

16 KB 64 bytes 4-way 1 cycle Write through,
No write
allocate

Table 2-4. L2 Unified Cache Differences

Size Line Size Associativity Integer
Latency

Floating-point
Latency

Write
Policies

Itanium® Processor 96 KB 64 bytes 6-way Minimum of 6
cycles

Minimum of 9
cycles

Write back,
Write allocate

Itanium® 2 Processor 256 KB 128 bytes 8-way Minimum of 5
cycles

Minimum of 6
cycles

Write back,
Write allocate

Low Voltage Itanium® 2
Processor

256 KB 128 bytes 8-way Minimum of 5
cycles

Minimum of 6
cycles

Write back,
Write allocate

Table 2-5. L3 Cache Differences

Size Line Size Associativity Integer
Latency

Floating-point
Latency Bandwidth

Itanium® Processor 4 MB or 2MB,
off chip

64 bytes 4-way Minimum of 21
cycles

Minimum of 24
cycles

16 bytes/cycle

Itanium® 2 Processor
(1.5M)

1.5 MB,
on chip

128 bytes 6-way Minimum of 12
cycles

Minimum of 21
cycles

32 bytes/cycle

Itanium® 2 Processor
(1 GHz, 3M)

3 MB, on chip 128 bytes 12-way Minimum of 12
cycles

Minimum of 21
cycles

32 bytes/cycle

Itanium® 2 Processor
(1.30 GHz, 3M)

3 MB, on chip 128 bytes 12-way Minimum of 14
cycles

Minimum of 23
cycles

32 bytes/cycle

Itanium® 2 Processor
(4M)

4 MB, on chip 128 bytes 16-way Minimum of 14
cycles

Minimum of 23
cycles

32 bytes/cycle

Itanium® 2 Processor
(6M)

6 MB, on chip 128 bytes 24-way Minimum of 14
cycles

Minimum of 23
cycles

32 bytes/cycle

Low Voltage Itanium® 2
Processor

1.5 MB,
on chip

128 bytes 6-way Minimum of 14
cycles

Minimum of 23
cycles

32 bytes/cycle

Table 2-6. Instruction TLB Differences

Hierarchy Size Associativity

Itanium® Processor 1 level: ITLB 64-entry Full

Itanium® 2 Processor 2 levels: L1 ITLB, L2 ITLB 32-entry, 128-entry Full, Full

Low Voltage Itanium® 2
Processor

2 levels: L1 ITLB, L2 ITLB 32-entry, 128-entry Full, Full

Table 2-3. L1D Cache Differences (Continued)

Size Line Size Associativity Latency Write Policies
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 2-5

Itanium® 2 Processor Enhancements
2.6 Branch Prediction

The major differences in the Itanium 2 processor and the Itanium processor branch prediction
support are:

• Latencies

• brp instructions are ignored for branch prediction, i.e. the brp.imp is not required to
achieve zero-bubble branches.

• Indirect branch targets are predicted from the source branch register rather than from a
hardware table.

• Possible reduced prediction of BBB bundles due to prediction encoding.

• More robust method for prediction structure repair after a mispredicted return.

• Hardware implementation of the brl (64-bit relative branch) instruction.

• Setting ar.ec = 1 is not required for perfect loop prediction.

Full details can be found in Section 7, “Branch Instructions and Branch Prediction.”

2.7 Instruction Prefetching

The Itanium 2 processor has an improved implementation of streaming and hint prefetching. See
Chapter 8, “Instruction Prefetching” for more details.

Table 2-7. Data TLB Differences

Hierarchy Size Associativity Penalty for Missing
First Level DTLB

Itanium® Processor 2 levels: L1 DTLB,
L2 DTLB

32-entry, 96-entry Direct, Full 10 cycles

Itanium® 2 Processor 2 levels: L1 DTLB,
L2 DTLB

32-entry, 128-entry Full, Full 2 cycles

Low Voltage Itanium® 2
Processor

2 levels: L1 DTLB,
L2 DTLB

32-entry, 128-entry Full, Full 2 cycles

Table 2-8. Branch Prediction Latencies (in cycles)

Itanium® 2 Processor Itanium® Processor

Correctly Predicted Taken IP-relative Branch 0 1

Correctly Predicted Taken Indirect Branch 2 0

Correctly Predicted Taken Return Branch 1 1

Last Branch in Perfect Loop Prediction 0 2

Misprediction Latency 6+ 9
2-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Functional Units and Issue Rules 3

This chapter describes the number and type of available functional units, instruction issue rules,
and heuristics for efficient instruction scheduling based upon machine resources and issue rules.

3.1 Execution Model

The Itanium 2 processor issues and executes instructions in assembly order, so programmer
understanding of stall conditions is essential for generating high performance assembly code.

In general, when an instruction does not issue at the same time as the instruction immediately
before it, instruction execution is said to have split issue. When a split issue condition occurs, all
instructions after the split point stall one or more clocks, even if there are sufficient resources for
some of them to execute. Common causes of split issue in the Itanium 2 processor are:

• An explicit stop is encountered.

• There are insufficient machine resources of the type required to execute an instruction.

• Instructions have not been placed in accordance with issue rules on the Itanium 2 processor.

The Itanium 2 processor issues instructions in the order defined by the static schedule. Care should
be taken by the code generator to avoid register dependencies within an issue group. The Itanium 2
processor does not insert implicit stop bits to break WAW hazards; thus, a WAW hazard between
loads and stores will result in an 8-cycle penalty if the predicates are true. Other WAW hazards,
such as those due to ALU operations, will result in non-deterministic results and also consider
predicates.

Once instructions are issued as a group, they will proceed as a group through the pipeline. If one
instruction in the issue group has a stall condition, the whole group will stall. This stall will also
stall all instructions behind it (younger) in the pipeline.

3.2 Number and Types of Functional Units

Although parallel instruction groups may extend over an arbitrary number of bundles and contain
an arbitrary number of each instruction type, the Itanium 2 processor has finite execution
resources. If a parallel instruction group contains more instructions than there are available
execution units, the first instruction for which an appropriate unit cannot be found will cause a split
issue and break the parallel instruction group.

The front-end of the Itanium 2 processor pipeline can fetch up to two bundles per cycle and the
back-end of the pipeline can issue as many as two bundles per cycle. Given that there are 3
instructions per bundle, the Itanium 2 processor can be considered a six instruction issue machine.
For more on details on the pipeline, see Appendix A, “Itanium® 2 Processor Pipeline.”

The Itanium 2 processor has a large number of functional units of various types. This allows many
combinations of instructions to be issued per cycle. Since only six instructions may issue per cycle,
only a portion of the Itanium 2 processor’s functional units described below will be used each
cycle.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 3-1

Functional Units and Issue Rules
There are six general-purpose ALU units (ALU0, 1, 2, 3, 4, 5), two integer units (I0, 1), and one
shift unit (ISHIFT, used for general purpose shifts and other special instructions). A maximum of
six of these types of instructions can be issued per cycle.

The Data Cache Unit (DCU) contains four memory ports. Two ports are generally used for load
operations; two are generally used for store operations. A maximum of four of these types of
instructions can be issued per cycle. The two store ports can support a special subset of the
floating-point load instructions.

There are six multimedia functional units (PALU0, 1, 2, 3, 4, 5), two parallel shift units
(PSMU0, 1), one parallel multiply unit (PMUL), and one population count unit (POPCNT). These
handle multimedia, parallel multiply, and the popcnt instruction types. At most, one pmul or
popcnt instruction may be issued per cycle. However, the Itanium 2 processor may issue up to six
PALU instructions per cycle.

There are four floating-point functional units: two FMAC units to execute floating-point
multiply-adds and two FMISC units to perform other floating-point operations, such as fcmp,
fmerge, etc. A maximum of two floating-point operations can be executed per cycle.

There are three branch units enabling three branches to be executed per cycle.

All of the computational functional units are fully pipelined, so each functional unit can accept one
new instruction per clock cycle in the absence of other types of stalls. System instructions and
access to system registers may be an exception.

3.3 Instruction Slot to Functional Unit Mapping

Each fetched instruction is assigned to a functional unit through an issue port. The numerous
functional units share a smaller number of issue ports. There are 11 issue ports: eight for
non-branch instructions and three for branch instructions. They are labeled M0, M1, M2, M3, I0,
I1, F0, F1, B0, B1, and B2. The process of mapping instructions within bundles to functional units
is called dispersal.

An instruction’s type and position within the issue group define to which issue port the instruction
is assigned. An instruction is mapped to a subset of the issue ports based upon the instruction type
(i.e. ALU, Memory, Integer, etc.). Then, based on the position of the instruction within the
instruction group presented for dispersal, the instruction is mapped to a particular issue port within
that subset.

Table 3-1, “A-Type Instruction Port Mapping,” Table 3-2, “I-Type Instruction Port Mapping,” and
Table 3-3, “M-Type Instruction Port Mapping” show the mappings of instruction types to ports and
functional units. Section 3.3.2 describes the selection of the particular port based upon instruction
position.

Note: Shading in the following tables indicates the instruction type can be issued on the port(s).

A-type instructions can be issued on all M and I ports (M0-M3 and I0 and I1). I-type instructions
can only issue to I0 or I1. The I ports are asymmetric so some I-type instructions can only issue on
port I0. M ports have many asymmetries: some M-type instructions can issue on all ports; some can
only issue on M0 and M1; some can only issue on M2 and M3; some can only issue on M0; some
can only issue on M2.
3-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Functional Units and Issue Rules
.

Table 3-1. A-Type Instruction Port Mapping

Instruction
Type Description Examples Ports

A1-A5 ALU add, shladd M0-M3, I0, I1

A4, A5 Add Immediate addp4, addl M0-M3, I0, I1

A6,A7,A8 Compare cmp, cmp4 M0-M3, I0, I1

A9 MM ALU pcmp[1 | 2 | 4] M0-M3, I0, I1

A10 MM Shift and Add pshladd2 M0-M3, I0, I1

Table 3-2. I-Type Instruction Port Mapping

Instruction
Type Description Examples

I Port

I0 I1

I1 MM Multiply/Shift pmpy2.[l | r],
pmpyshr2{.u}

I2 MM Mix/Pack mix[1 | 2 | 4].[l | r
pmin, pmax

I3, I4 MM Mux mux1, mux2

I5 Variable Right Shift shr{.u] =ar,ar
pshr[2 | 4] =ar,ar

I6 MM Right Shift Fixed pshr[2 | 4] =ar,c

I7 Variable Left Shift shl{.u] =ar,ar
pshl[2 | 4] =ar,ar

I8 MM Left Shift Fixed pshl[2 | 4] =ar,c

I9 MM Popcount popcnt

I10 Shift Right Pair shrp

I11-I17 Extr, Dep

Test Nat

extr{.u}, dep{.z}

tnat

I19 Break, Nop break.i, nop.i

I20 Integer Speculation Check chk.s.i

I21-28 Move to/from BR/PR/IP/AR mov =[br | pr | ip | ar]
mov [br | pr | ip | ar]=

I29 Sxt/Zxt/Czx sxt, zxt, czx

Table 3-3. M-Type Instruction Port Mapping

Instruction
Type Description Examples

Memory Port

M0 M1 M2 M3

M1, 2, 3 Integer Load ldsz, ld8.fill

M4, 5 Integer Store stsz, st8.spill

M6, 7, 8 Floating-point Load ldffsz, ldffsz.s, ldf.fill

Floating-point Advanced Load ldffsz.a, ldffsz.c.[clr | nc]

M9, 10 Floating-point Store stffsz, stf.spill
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 3-3

Functional Units and Issue Rules
3.3.1 Execution Width

When dispersing instructions to functional units, the Itanium 2 processor views, at most, two
bundles at a time with no special alignment requirements. This text refers to these bundles as the
first and second bundles. A bundle rotation causes new bundles to be brought into the two-bundle
window of instructions being considered for issue. Bundle rotations occur when all the instructions
within a bundle are issued. Either one or two bundles can be rotated depending on how many
instructions were issued.

M11, 12 Floating-point Load Pair ldfpfsz

M13, 14, 15 Line Prefetch lfetch

M16 Compare and Exchange cmpxchgsz.[acq | rel]

M17 Fetch and Add fetchaddsz.[acq | rel]

M18 Set Floating-point Reg setf.[s | d | exp | sig}

M19 Get Floating-point Reg getf.[s | d | exp | sig}

M20, 21 Speculation Check chk.s{.m}

M22, 23 Advanced Load Check chk.a[clr | nc]

M24 Invalidate ALAT invala

Mem Fence, Sync, Serialize fwb, mf{.a}, srlz.[d | i],
sync.li

M25 RSE Control flushrs, loadrs

M26, 27 Invalidate ALAT invala.e

M28 Flush Cache, Purge TC Entry fc, ptc.e

M29, 30, 31 Move to/from App Reg mov{.m} ar=

mov{.m} =ar

M32, 33 Move to/from Control Reg mov cr=, mov =cr

M34 Allocate Register Stack Frame alloc

M35, 36 Move to/from Proc. Status Reg mov psr.[l | um]

mov =psr.[l | m]

M37 Break, Nop.m break.m, nop.m

M38, 39, 40 Probe Access probe.[r | w].{fault}

M41 Insert Translation Cache itc.[d | i]

M42, 43 Move Indirect Reg
Insert TR

mov ireg=, move =ireg,
itr.[d | i]

M44 Set/Reset User/System Mask sum, rum, ssm, rsm

M45 Purge Translation Cache/Reg ptc.[d | i | g | ga]

M46 Virtual Address Translation tak, thash, tpa, ttag

Table 3-3. M-Type Instruction Port Mapping (Continued)

Instruction
Type Description Examples

Memory Port

M0 M1 M2 M3
3-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Functional Units and Issue Rules
3.3.2 Dispersal Rules

The Itanium 2 processor hardware makes no attempt to reorder instructions to avoid stalls. Thus,
the code generator must be careful about the number, type, and order of instructions within a
parallel instruction group to avoid unnecessary stalls. The use of predicates has no effect on
dispersal – all instructions are dispersed in the same fashion whether predicated true, predicated
false, or unpredicated. Similarly, nop instructions are dispersed to functional units as if they were
normal instructions. The dispersal rules for execution units vary according to slot type; i.e. I, M, F,
B, or L. The rules for the different slot types are described below.

Dispersal rules for F slot instructions:

• An F slot instruction in the first bundle maps to F0.

• An F slot instruction in the second bundle maps to F1.

• A SIMD FP instruction essentially maps to both F0 and F1. See Section 3.3.3 for more
information on SIMD FP issue rules.

Dispersal rules for B slot instructions:

• Each B slot instruction in an MBB or BBB bundle maps to the corresponding B unit. That is, a
B slot instruction in the first position of the template is mapped to B0; in the second position, it
is mapped to B1; and in the third position, it is mapped to B2.

• The B instruction in an MIB/MFB/MMB bundle maps to B0 if it is a brp or nop.b and it is
the first bundle, otherwise it maps to B2.

• For purposes of dispersal, break.b is treated like a branch.

Dispersal rules for L slot instructions:

• An MLX bundle uses ports equivalent to an MFI bundle. If the MLX bundle is the first bundle,
the L slot instruction maps to F0. Otherwise, it maps to F1. However, there is no conflict when
the MLX template is issued with an MMF or MIF bundle and the F op is a SIMD FP
instruction.

Dispersal rules for I slot instructions:

• The instruction in the first I slot of the two-bundle issue group will issue to I0. The second
I slot instruction will issue to I1.

• If the second I slot instruction can only map to an I0 port, see Table 3-2, an implicit stop will
be inserted and the second I slot instruction will be issued in the next cycle. Thus, an I0-only
instruction should be placed in the first I slot of a bundle pair. Only one I0-only instruction can
be issued per cycle.

• An instruction in an I slot will not necessarily be issued to an I port. If the first two I slot
instructions have been issued to the I ports, and an additional I slot instruction in the issue
group contains A-type instructions as listed in Table 3-1, and M ports are available; these
instructions will be mapped to available M ports. This allows the potential dual issue of the
MII-MII bundle pair. This is new to the Itanium 2 processor and is not true on the Itanium
processor.

• For the MLI template, the I slot instruction is always assigned to port I0 if it is in the first
bundle or it is assigned to port I1 if it is in the second bundle. Thus, the bundle pair MII-MLI
can never dual issue.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 3-5

Functional Units and Issue Rules
Dispersal rules for M slot instructions:

On the Itanium 2 processor, M slot instructions are grouped into four subtypes (see Table 3-3):

• Load subtype, which can be issued on either M0 or M1 or both (e.g. integer load, sync)

• Store subtype, which can be issued on either M2 or M3 or both (e.g. integer store, alloc,
getf)

• Generic subtype, which can be issued on any of the four M ports (e.g. ALU, floating-point
load)

• Special instructions, which can be issued on only M2 port (e.g. getf, mov to AR)

The issue logic can reorder M slot instructions between different subtypes but cannot reorder
instructions within the same subtypes. For instance, within an issue group an integer store can
precede an integer load without causing a split issue. The store will be mapped to M2 and the load
to M0 since the two instructions were from different subtypes.

However, if a store precedes a getf, the store will be issued to M2 and a split issue will occur
because the getf must issue on M2. Instructions within the same subtype cannot be reordered.
Therefore, the code scheduler should place the getf instruction before the store to ensure the
getf instruction is mapped to M2 and the store is mapped to M3 to avoid port oversubscription.

Dispersal becomes more complicated when generic subtype instructions early in the issue group
consume M ports. There is no encompassing rule to cover these cases. It is recommended that the
more restrictive subtypes get scheduled first in the issue group. Example 3-1 and Example 3-2
demonstrate some of the dispersal possibilities.

Note: MA is a generic subtype, ML is an integer load, and MS is a store subtype instruction.

Example 3-1. MAMLI - MSMAI

The bundle pair MAMLI - MSMAI gets mapped to ports M2 M0 I0 - M3 M1 I1.

The first generic subtype instruction mapped to M2 causes the MS instruction to be mapped to M3.
If MS is a getf instruction, a split issue will occur.

Example 3-2. MAMAI - MSMAI

The bundle pair MAMAI - MSMAI gets mapped to ports M0 M1 I0 - M2 M3 I1, which allows MS
to get the more favorable M2 port.

Table 3-4 shows the combination bundle types that the Itanium 2 processor can dual issue
(indicated by the shaded areas). Rows contain first bundle pair; columns contain second.

Table 3-4. Dual Issue Bundle Types

MII MLI MMI MFI MMF MIB MBB BBB MBB MFB

MII

MLI

MMI

MFI

MMF

MIB1

MBB
3-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Functional Units and Issue Rules
Note: Floating-point loads are generic subtype instructions. As such, the Itanium 2 processor can issue up
to four per cycle. This capability is available to all normal and speculative floating-point loads of
all sizes. Advanced floating-point loads, load pair instructions, and check load instructions are not
generic and must issue on the two load ports while the floating-point stores only issue to the two
store ports.

3.3.3 Split Issue and Bundle Types

Because there is an increased number of functional units in the Itanium 2 processor and I slot
instructions can sometimes issue to M ports, many bundle pairs can dual issue. Resource
oversubscription rarely occurs. Reasons that bundle pairs would not dual issue are explicit stops
and dispersal problems mentioned in the previous section. In addition, there are several Itanium 2
processor-specific (rather than architectural) special cases that will cause split issue. These specific
cases are listed below:

• Branches

— BBB/MBB Always splits issue after either of these bundles.

— MIB/MFB/MMB Splits issue after any of these bundles unless the B slot contains a
nop.b or a brp instruction. A br instruction always introduces an
implicit stop bit for these bundle types.

— MIB BBB Splits issue after the first bundle in this pair from B port
oversubscription.

• SIMD FP

— Only one FP instruction can issue per cycle if the instruction is an SIMD FP instruction.
For instance, for the bundle pair MFpI MFI, where Fp is a SIMD FP operation, there will
be an implicit stop between the M and F instructions of the second bundle, even if the F
instruction is a nop.f.

— Similarly, for the bundle pair MFI MFpI, there will be an implicit stop between the M and
Fp instructions of the second bundle since the Fp instruction must issue to the F0 port and
the first F instruction has already mapped to F0.

— One case which might seem to cause a split issue, but does not, is the bundle pair MFpI
MLX. Even though the L slot acts like it maps to an F port, these two bundles can dual
issue.

BBB

MBB

MFB

1. The B must be nop.b or brp

Table 3-4. Dual Issue Bundle Types (Continued)

MII MLI MMI MFI MMF MIB MBB BBB MBB MFB
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 3-7

Functional Units and Issue Rules
3-8 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Latencies and Bypasses 4

This chapter describes latencies and bypasses for execution of the different instruction types on the
Itanium 2 processor.

In general, integer instructions have one cycle of latency, floating-point instructions have four
cycles of latency, multimedia instructions have two cycles of latency, and L1 cache hits have one
cycle of latency. However, due to asymmetric bypasses, there are many special cases that need to
be listed separately.

4.1 Control and Data Speculation Penalties

The Itanium 2 processor can compute the address of the recovery code from the offset in the
chk.a/chk.s/fchkf instruction without having to trap to the OS fault handler. The speculative
load recovery latencies listed in Table 4-1 are approximations based upon the time difference
between the chk.s/chk.a/fchkf retirement and the completion of first instruction of the
fix-up code. These latencies do not include possible cache or TLB latencies. Also, the cost of the
recovery code itself is not included. Further information on advanced loads can be found in
Section 5.1, “Data Speculation and the ALAT.”

4.2 Branch Related Latencies and Penalties

Table 4-2 describes latencies for branch operations and branch related flushes. See Section 7,
“Branch Instructions and Branch Prediction” for more detailed information.

Table 4-1. Speculative Load Recovery Latencies

Instruction Latency (cycles)

chk.a, both int and fp (ALAT hit), chk.s (no NaT/NatVal) 0

chk.a, both int and fp (ALAT miss), chk.s (NaT/NatVal) 18

ld*.c, ldf*.c (ALAT hit, L1/L2 hit) 0

ld*.c, ldf*.c (ALAT miss, L1/L2 hit) 8

Table 4-2. Branch Prediction Latencies

Branch Type Whether Prediction Target Prediction Front-end Bubbles

IP-relative Correct Correct 0

IP-relative Correct Incorrect 1/61

1. The 6-cycle penalty is for IP-relative branches that cross a 40-bit boundary. Loop branches that are mispredicted take 7 cycles.
These incur a full branch mispredict penalty.

Return Correct Correct 1

Return Correct Incorrect 6
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 4-1

Latencies and Bypasses
4.3 Latencies for OS Related Instructions

Table 4-4 lists the latencies for accesses to the CR, AR, and KR registers and the serialization
latencies associated with many driver or OS operations, such as virtual address creation.

Table 4-3. Execution with Bypass Latency Summary

Consumer (across)
Producer (down)

Qual.
Pred.

Branch
Pred. ALU

Load
Store
Addr

Multi-
media

Store
Data Fmac Fmisc getf setf

Adder: add, cmp, tbit, addp4,
shladd, shladdp4, sum, logical
ops, 64-bit immed. moves,
movl, post-inc ops (includes
post-inc stores, loads,
lfetches)

n/a n/a 1 1 3 1 n/a n/a n/a 1

Multimedia n/a n/a 3 3 2 3 n/a n/a n/a 3

thash, ttag, tak, tpa, probe1 5 6 6 5

getf2 n/a n/a 5 6 6 5 n/a n/a n/a 5

setf2 n/a n/a n/a n/a n/a 6 6 6 6 n/a

Fmac: fma, fms, fnma, fpma,
fpms, fpnma, fadd, fnmpy,
fsub, fpmpy, fpnmpy, fmpy,
fnorm, xma, frcpa, fprcpa,
frsqrta, fpsqrta, fcvt, fpcvt

n/a n/a n/a n/a n/a 4 4 4 4 n/a

Fmisc: fselect, fcmp, fclass,
fmin, fmax, famin, famax,
fpmin, fpmax, fpamin, fpcmp,
fmerge, fmix, fsxt, fpack,
fswap, fand, fandcm, for, fxor,
fpmerge, fneg, fnegabs, fpabs,
fpneg, fpnegabs

n/a n/a n/a n/a n/a 4 4 4 4 n/a

Integer side predicate write:
cmp, tbit, tnat

1 0 n/a n/a n/a n/a n/a n/a n/a n/a

FP side predicate write: fcmp 2 1 n/a n/a n/a n/a n/a n/a n/a n/a

FP side predicate write: frcpa,
fprcpa, frsqrta, fpsqrta

2 2 n/a n/a n/a n/a n/a n/a n/a n/a

Integer Load3 n/a n/a N N+1 N+1 N N N N N

FP Load4 n/a n/a M+1 M+2 M+2 M+1 M+1 M+1 M+1 M+1

IEU2: move_from_br, alloc n/a n/a 2 2 3 2 n/a n/a n/a 2

Move to/from CR or AR5 n/a n/a C C C C n/a n/a n/a C

Move to pr 1 0 2 2 3 2 n/a n/a n/a n/a

Move indirect6 n/a n/a D D D D n/a n/a n/a D

1. Since these operations are performed on the L1D, they interact with the L1D and L2 pipelines. These are the minimum latencies but they could be
much larger because of this interaction.

2. Since these operations are performed on the L1D, they interact with the L1D and L2 pipelines. These are the minimum latencies which could be
much larger because of this interaction.

3. N depends upon which level of cache is hit: N=1 for L1D, N=5 for L2, N=12-15 for L3, N=~180-225 for main memory. These are minimum latencies
and are likely to be larger for higher levels of cache.

4. M depends upon which level of cache is hit: M=5 for L2, M=12-15 for L3, M=~180-225 for main memory. These are minimum latencies and are likely
to be larger for higher levels of cache. The +1 in all table entries denotes one cycle needed for format conversion.

5. Best case values of C range from 2 to 35 cycles depending upon the registers accessed. EC and LC accesses are 2 cycles, FPSR and CR accesses
are 10-12 cycles.

6. Best case values of D range from 6 to 35 cycles depending upon the indirect registers accessed. Iregs pkr and rr are on the faster side being 6 cycle
accesses.
4-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Latencies and Bypasses
Table 4-4. Latencies for OS Related Instructions

READ Form WRITE Form

Register
Type Instruction Latency Instruction Use Latency srlz.d srlz.i

GR mov r1=r1 int op 1

mov r1=imm22 int op 1

mov r1=imm64 int op 1

FP mov f1=f2 fp op 4

PSR mov r1=psr 12 mov psr=r1 6 17

 mov r1=psr.um 12 mov psr.um=r1 int op 5

IP mov r1=ip 2 READ ONLY

PR mov r1=pr 2 mov pr=r1 int op 1

 mov pr.rot=r1 int op 1

BR mov r1=br 2 mov br=r1 branch 7

 mov br.ret=r1 return 7

AR mov r1=ar.kr0 12 mov ar.kr0=r1 read kr 1

mov r1=ar.rsc 12 mov ar.rsc=r1 loadrs 14

mov r1=ar.bsp 12 READ
ONLY

mov r1=ar.bspstore 12 mov ar.bspstore=r1 flushrs 14

mov r1=ar.rnat 5 mov ar.rnat=r1 flushrs 3

mov r1=ar.ccv 11 mov ar.ccv=r1 cmpxchg 1

mov r1=ar.unat 5 mov ar.unat=r1 ld8.fill 6

mov r1=ar.fpsr 12 mov ar.fpsr=r1 fmac 7

mov r1=ar.itc 36 mov ar.itc=r1 read itc 1

mov r1=ar.pfs 2 mov ar.pfs=r1 alloc 1

return 0

mov r1=ar.lc 2

mov r1=ar.ec 2

CR mov from CR0 (DCR) 12 mov to CR0 (DCR) 6 17

mov from CR1 (ITM) 36 mov to CR1 (ITM) 35

mov from CR2 (IVA) 2 mov to CR2 (IVA) 7

mov from CR8 (PTA) 5 mov to CR8 (PTA) 6 17

mov from CR9 (GPTA) 5 mov to CR9 (GPTA) 0 11

mov from CR16 (IPSR) 12 mov to CR16 (IPSR) 6

mov from CR17 (ISR) 2 mov to CR17 (ISR) 7

mov from CR19 (IIP) 2 mov to CR19 (IIP) 7

mov from CR20 (IFA) 5 mov to CR20 (IFA) 6

mov from CR21 (ITIR) 5 mov to CR21 (ITIR) 6
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 4-3

Latencies and Bypasses
mov from CR22 (IIPA) 2 mov to CR22 (IIPA) 7

mov from CR23 (IFS) 12 mov to CR23 (IFS) 11

mov from CR24 (IIM) 2 mov to CR24 (IIM) 11

mov from CR25 (IHA) 5 mov to CR25 (IHA) 6

mov from CR64 (LID) 36 mov to CR64 (LID) 35

mov from CR65 (IVR) 36 READ ONLY

mov from CR66 (TPR) 36 mov to CR66 (TPR) 35

mov from CR67 (EOI) 36 mov to CR67 (EOI) 35

mov from CR68 (IRR0) 36 READ ONLY

mov from CR69 (IRR1) 36 READ ONLY

mov from CR70 (IRR2) 36 READ ONLY

mov from CR71 (IRR3) 36 READ ONLY

mov from CR72 (ITV) 36 mov to CR72 (ITV) 35

mov from CR73 (PMV) 36 mov to CR73 (PMV) 35

mov from CR74 (CMCV) 36 mov to CR74 (CMCV) 35

mov from CR80 (LRR0) 36 mov to CR80 (LRR0) 35

mov from CR81 (LRR1) 36 mov to CR81 (LRR1) 35

IR mov from cpuid[r0] 36 mov to cpuid[r0] n/a n/a

mov from dbr[r0] 36 mov to dbr[r0] 1

mov from ibr[r0] 36 mov to ibr[r0] 46

mov from msr[r0] 36 mov to msr[r0] 35 46

mov from pkr[r0] 5 mov to pkr[r0] 11 22

mov from pmc[r0] 36 mov to pmc[r0] 35 46

mov from pmd[r0] 36 mov to pmd[r0] 35 46

mov from rr[r0] 5 mov to rr[r0] 11 22

Table 4-4. Latencies for OS Related Instructions (Continued)

READ Form WRITE Form

Register
Type Instruction Latency Instruction Use Latency srlz.d srlz.i
4-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Data Operations 5

This chapter describes considerations for data operations such as speculative or predicated loads or
stores, floating-point loads, and prefetches. Load hints, data alignment, and write coalescing
considerations are also discussed.

5.1 Data Speculation and the ALAT

The family of instructions composed of ld.a/ldf.a/ldfp.a, ld.c/ldf.c/ldfp.c, and
chk.a provide the capability to dynamically disambiguate memory addresses between loads and
stores. Architecturally, the ld.c and chk.a instructions have a 0-cycle latency to consuming
instructions. This allows the ld.c/ldf.c/ldfp.c/chk.a and the corresponding consuming
instruction to be scheduled in the same cycle. However, if a ld.c/ldf.c/ldfp.c/chk.a
misses in the ALAT, additional latency is incurred. Also, an advance load activates the scoreboard
for the target register in order to ensure correct operation in the event of a L1D miss.

A ld.c,ldf.c, or ldfp.c that misses the ALAT initiates an L1 cache access. Other
instructions in the issue group will be re-executed. This is an 8-cycle penalty that will affect all
operations issued since the check load, whether there was a consumer in the same issue group or
not. The consumer will be exposed to any additional cache latency (i.e. if the check load is found in
the L1 then the penalty will be only 8 cycles). However, if the check load is in the L2, the user will
see greater latency.

A chk.a that misses in the ALAT executes a branch to recovery code. On the Itanium 2 processor,
the branch target can be computed from the offset contained in the chk.a instruction in most
instances. This avoids the trap to the operating system that is done on the Itanium processor. The
cost of a chk.a that misses in the ALAT is at least 18 cycles to branch to recovery code, plus the
cost of the recovery code, plus the return. The actual resteer to fix up code occurs within 10 cycles,
however there are at least 8 cycles for the first instruction of the fix up code to complete. The
8 cycles will increase when the branch to fix up code misses the L2 ITLB or L1I and other cache
levels.

The Itanium 2 processor ALAT has 32 entries and is fully associative. Each entry contains the
register number, type, and the lower 20 bits of the physical address. The address is used to compare
against potentially conflicting stores while the register index and type support the check operation.
Since only partial addresses are saved in the ALAT, it is possible to have a false conflict if a store
and an ALAT entry had different addresses yet shared the same lower 20 bits. In addition, if a
ld.c or chk.a follows a store too closely, the ALAT address comparison will be done on fewer
than 20 bits. This is a result of the minimum 4K page size support and the need for both store and
check addresses to be fully translated to accomplish the 20-bit comparison. Table 5-1 lists the
distances and comparison sizes.

Note: Table 5-1, ld.c also implies ldf.c and ldfp.c.

Table 5-1. ALAT Entry Comparison Sizes

Distance Comparison Size

st and ld.c in same cycle 12-bit

st precedes ld.c by 1cycle 12-bit

st precedes ld.c by more than 1 cycles 20-bit
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 5-1

Data Operations
Note: On the Itanium processor, if a store and chk.a occur in the same cycle, the chk.a will always
fail, but this is not the case for the Itanium 2 processor.

5.1.1 Allocation/Replacement Policy

When a new entry is added in the ALAT, the following is the priority listing of which entry is
replaced:

• The entry with the same register number as the new entry.

• The first invalid entry.

• A valid entry is replaced based upon advancing pointers associated with ports M0 and M1.
This approximates a first-in - first-out (FIFO) algorithm.

5.1.2 Rules and Special Cases

The following rules and special cases should be noted:

• The Itanium architecture definition prohibits scheduling a ld.a and ld.c in the same cycle
if both instructions have the same target register. Similarly, ld.a and chk.a cannot be
scheduled in the same cycle if they have the same target register. However, separation by one
or more cycles will give normal ALAT behavior. A similar situation is true for ldf.a and
ldfp.a.

• A faulting ld.a will not write to the ALAT. Such faults are listed in Volume 3: Instruction Set
Reference of the Intel® Itanium® Architecture Software Developer’s Manual and include,
among others, Data Page Not Present, Data TLB, and Unaligned Data Reference faults. In
these situations, a subsequent corresponding ld.c or chk.a will definitely miss in the
ALAT.

• If both an ALAT set and ALAT invalidate instruction occur in the same cycle, the ALAT set
will not occur. For instance, if a chk.a.clr rx and rx = ld.a[addr] occur in the
same cycle, the address of the ld.a[addr] will not be entered in the ALAT.

5.2 Speculative and Predicated Loads/Stores

Memory operations with speculative inputs behave in the following manner:

• For a normal load/store whose source register contains a NaT value, a register NaT
consumption fault will occur.

• For a speculative load whose source register contains a NaT value, the NaT bit is set and a zero
value will be returned.

st and chk.a in same cycle 12-bit

st precedes chk.a by 1 cycle 12-bit

st precedes chk.a by more than 1
cycles

20-bit

Table 5-1. ALAT Entry Comparison Sizes (Continued)

Distance Comparison Size
5-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Data Operations
The Itanium 2 processor supports two deferral behaviors: early and late. The behavior of
speculative memory operations depends on several factors such as interrupt state, deferral control
registers, and processor configuration. Early deferral mode is enabled through PAL procedure
PAL_PROC_SET_FEATURES. The effects of this will be maintained until the system is rebooted
and the processor returns to the default late deferral behavior. Table 5-2 lists the requirements to
enable early deferral.

Table 5-3 shows the latency, according to deferral mode, that a speculative load may incur before
returning data or eventually setting the destination NaT bit. The cost of each exception deferral
ranges from one cycle to several cycles depending to the latency of the HPW. These HPW-related
penalties cannot be scheduled around and affect every instruction in the issue group. Also, it is
possible for the exception causing a deferral to not be resolved when the exception is deferred.
Thus, the deferral stall may be seen each time through a loop where the chk.s is not reached.

Note: Speculative loads are not limited to ld.s instructions. lfetch instructions are normally
speculative and behave similarly to ld.s instructions with the exception that they never set a NaT
bit or return data. An lfetch instruction may be made non-speculative with the .fault
completer.

The advantage of early deferral is that speculative operations complete with low latency. The
latency is at best three cycles for an early deferred ld.s as seen by a dependent operation. This is
important in situations where the code generator is aggressive in its speculation and the chances of
the speculative operation actually hitting in the data TLB is low. Since early deferral does not
initiate a VHPT walk by the HPW, even valid requests may fault since they are not in the L2
DTLB.

Table 5-2. Early and Late Deferral

Early Deferral Enabled psr.ic dcr.dm Deferral Mode

Yes 0 0 Late

Yes 0 1 Early

Yes 1 0 Late

Yes 1 1 Late

No x x Late

Table 5-3. Control Speculation Penalties

Result Hit/Miss Penalty (early deferral) Penalty (late deferral)

Return Valid Data L1 DTLB Hit 1 1

L2 DTLB Hit 4 + L2 latency 4 + L2 latency

VHPT Hit 5 (no HPW walk) 20 + L2 latency

Set NaT Bit NaT Source 1 1

L1 DTLB Hit 2 2

L2 DTLB Hit 2 or 4 + L2 latency 2 or 4 + L2 latency

VHPT Hit 5 (no HPW walk) 22 or 2 + L2 latency

VHPT Miss 5 (no HPW walk) 20 + L2 latency

VHPT Fault 5 (no HPW walk) 17 + L2 latency
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 5-3

Data Operations
5.3 Floating-Point Loads

Floating-point loads are not cached in the L1D and are instead processed directly by the L2. The
limited size and bandwidth of the L1D makes caching this data unprofitable. It is expected that FP
memory accesses can more easily be scheduled to cover the additional latency of the L2.

Floating-point loads incur an extra clock of latency over integer accesses to accommodate format
conversion. Therefore, a floating-point load takes 6 cycles if it hits in L2. Note also, that the FP
load pair instructions (both double-precision and single-precision) also access the L2 cache, so the
latency for a load pair instruction is also 6 cycles assuming that it is an L2 hit.

5.4 Data Cache Prefetching and Load Hints

The architecture provides two software mechanisms to control when and where data is loaded. The
lfetch instruction is used to explicitly prefetch data into the L1D, L2, or L3 caches. To facilitate
more data locality, temporal hints can be used to control the level of the cache hierarchy into which
loaded data is placed.

5.4.1 lfetch Implementation

The Itanium 2 processor implementation of lfetch is as follows:

• lfetch.none is completed only if there are no exceptions. Exceptions are not reported.
Section 5.2 contains information on the behavior of lfetch instructions that encounter
memory management faults.

• lfetch.fault is completed whether or not there is an exception. If there is an exception, it
is raised to the OS to complete the operation. A TLB miss is resolved as with a normal load.

• If the lfetch misses in L1D but hits in the L2, the L1D cache is allocated based on the
lfetch temporal hint. lfetch instructions have the same temporal locality behavior as
integer loads.

• All lfetch types which miss in the first level data TLB and hit in the second level data TLB
will stall the main pipeline and fill the first level data TLB as a normal load operation. The
behavior of the lfetch in the event of an L2 DTLB miss depends on the use of the early or
late deferral modes described in Section 5.2. In early deferral mode, the lfetch aborts with
an L2 DTLB miss. In late deferral mode, the lfetch will initiate an HPW access. If the
access fails, the lfetch will abort. However, it is only the lfetch.fault instruction that
will initiate a HPW access when it misses both data TLBs.

• An lfetch.excl appears as a store to other cache levels and the system bus. This means
that these operations will place a line in the M state within the caches. Do not use the .excl
completer unless there is a high probability that the data will truly be modified. Otherwise, the
cache will evict unmodified data to the cache structures and eventually to memory that is not
modified.

• An lfetch to an uncacheable memory location will not reach the L2 cache as required by the
architecture.

Note: The lfetch instruction appears as a load operation without a specific data return to the core. As
such, many of the limitations that normal loads experience anywhere in the memory hierarchy will
affect the lfetch instruction as well. Exceptions are noted and are provided with the intent that
they will make lfetch instructions easier for the compiler to use in realizing performance.
5-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Data Operations
5.4.2 Load Temporal Locality Completers

The Itanium architecture uses memory locality hints for managing the data cache hierarchy. On the
Itanium 2 processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta.
The Itanium 2 processor does not support a non-temporal buffer; instead, non-temporal L2
accesses are allocated in L2 with biased replacement. The implementation is as follows:

• t1 hint is for normal accesses. On a load, the line is allocated in L1D, L2, and L3. On a store,
the line is allocated in L2 and L3, but not L1D.

• For loads with nt1 hint, the line is only allocated in L2 and L3. In addition, the line is biased
to be replaced in the L2. This is achieved by not updating the L2 LRU bits. Note that by doing
so, the line has a higher probability of being replaced, though it is not guaranteed to be
replaced next.

• Loads with nt2 hint are implemented in the same manner as loads with nt1 hint.

• For loads and stores with nta hint, the line is only allocated and biased to be replaced in L2.
The line is not allocated into L3.

Table 5-4 lists how L1D, L2, and L3 handle line allocation and LRU update for different hints.
Note that:

• L1D is write through and does not support FP loads and stores.

• The valid bit update in the L1D cache and the LRU bits update in the L3 cache are independent
of the hint bits. Only the update of the L2 LRU is biased to mimic the behavior of a
non-temporal buffer.

Note: Other instruction/hint combinations are not allowed by the Itanium architecture.

Table 5-4. Processor Cache Hints

Access Hint

L1D L2 L3

Alloc1

1. Alloc indicates an entry is allocated in that level of the cache on a cache miss.

Update LRU
Bits? Alloc Update LRU

Bits? Alloc Update LRU
Bits?

lfetch

t1 Yes Yes Yes Yes Yes Yes

nt1 No No Yes Yes Yes Yes

nt2 No No Yes No Yes Yes

nta No No Yes No No No

Integer load2

2. Integer Load and FP Load - only t1, nt1, and nta attributes are allowed.

t1 Yes Yes Yes Yes Yes Yes

nt1 No No Yes Yes Yes Yes

nta No No Yes No No No

Integer store3

3. Integer Store and FP store - only t1 and nta are allowed.

t1 No No Yes Yes Yes Yes

nta No No Yes No No No

FP load

t1 No No Yes Yes Yes Yes

nt1 No No Yes No Yes Yes

nta No No Yes No No No

FP store
t1 No No Yes Yes Yes Yes

nta No No Yes No No No
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 5-5

Data Operations
5.4.2.1 General Descriptions of Hints

Memory locality hints are described below:

• .none: The load delivers the data and is loaded into both L1D and L2.

• .nt1: This hint means non-temporal locality in the first cache level capable of holding the
referenced data. The Itanium architecture suggests this hint indicates that the load should
deliver the data and the line should not be allocated in the first level caches. For the Itanium 2
processor, this hint will cause the line not to be allocated to the L1D on an integer cache miss.
If it is already in the L1D cache, it will not be deallocated.

• .nt2: This hint means non-temporal locality in the second cache level capable of holding the
instruction. For the Itanium 2 processor, this hint will cause integer accesses to the line to be
allocated in L2; however, the LRU information will not be updated for the line (i.e. it will be
the next line to be replaced in the particular set). If it is already in the L2 cache, it will not be
deallocated.

• .nta: This hint means non-temporal locality in all levels of the cache hierarchy. For the
Itanium 2 processor, this hint will cause the line to be allocated in L2; however, the LRU
information will not be updated for the line (i.e. it will be the next line to be replaced in the
particular set). This line will not be allocated in the L3 cache. If present in any cache, it will
not be deallocated from that cache, although sometimes lines are deallocated for coherency
reasons.

Note: There is no way to allocate only in L3 and not impact L2, even with an lfetch instruction.

The one-way allocation for non-temporal L2 data may lead to displacement of L2 data for a
temporary data stream since the non-temporal data may be quickly replaced. A single L2 way holds
32KB. This may be large enough for a single .nt stream, but an attempt to use two non-temporal
streams may cause one stream to displace the other.

5.5 Data Alignment

The Itanium 2 processor implementation supports arbitrarily aligned load and store accesses,
except for integer accesses that cross 8-byte boundaries and any accesses that cross 16-byte
boundaries.

If psr.ac = 1, all unaligned memory references will fault.

If psr.ac = 0, these rules must be followed to avoid faults:

• Integer loads and stores must be aligned within an 8-byte aligned window.

• All FP 4-byte and 8-byte load operations can be unaligned within a 16-byte aligned window.

• All FP load pairs must be naturally aligned; i.e. singles on an 8-byte alignment, doubles on a
16-byte alignment, ldpr.8 on a 16-byte alignment.

• All FP 10-byte loads can be unaligned within a 16-byte window.

• FP fill/spill instructions must be aligned within a 16-byte aligned window.

• FP stores can be unaligned within a 16-byte aligned window.

• Semaphores (cmpxchg, xchg, fetchadd) must be restricted to natural alignment.

• All uncacheable (UC, WC) accesses which cross an 8-byte boundary will fault.
5-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Data Operations
5.6 Write Coalescing

For increased performance of uncacheable references to frame buffers, previous generation IA-32
processors defined the write coalescing (WC) memory type. WC allows streams of data writes to
be combined into a single, larger bus write transaction. The Itanium 2 processor fully supports
write coalescing as defined by the Intel® Pentium® III processor. Like the Pentium III processor, the
Itanium 2 processor WC loads are performed directly from memory and not from the coalescing
buffers.

The Itanium 2 processor has a separate two-entry, 128-byte buffer (WCB) that is used for WC
accesses exclusively. Each byte in the line has a valid bit. If all valid bits are true, then the line is
said to be full and will be evicted by the processor.

5.6.1 WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries
are flushed). Table 5-5 shows the eviction conditions when the processor is operating in the
Itanium system environment:

5.6.2 WC Buffer Flushing Behavior

As mentioned previously, the Itanium 2 processor WCB contains two entries. The WC entries are
flushed in the same order as they are allocated. That is, the entries are flushed in written order. This
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC
entry at a time and does not write the second WC entry until the first one is full. This implies that
the addresses of the WC stores monotonically increase. A store with release semantics should be
used to force a flush of a partial line before starting on the next line.

Table 5-5. Itanium® 2 Processor WCB Eviction Conditions

Eviction Condition Itanium® Instructions

Memory fence (mf) mf

Memory release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Architectural Conditions for WCB Flush

Flush cache (fc) hit on WCB yes

Flush write buffers (fwb) yes

Any UC load no 1

1. Itanium® architecture doesn’t require the WC buffers to be coherent with respect to UC
load/store operations.

Any UC store no 1

UC load or ifetch hits WCB no 1

UC store hits WCB no 1

WC load/ifetch hits WCB no

WC store hits WCB no2

2. A WC store which hits in the WCB updates that entry if it is not full. If it is full, a check is made
if that entry is older or younger than the other WCB entry. If it is younger, the older WCB entry
is flushed out (even if it is not full). The younger WCB entry is flushed afterwards. If the WCB
entry is the oldest, it is flushed by itself.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 5-7

Data Operations
In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
always flushed in a program written order for a “well-behaved” stream, even in the presence of
interrupts. For example, consider the following scenario: if software issues a “well-behaved”
stream, but is interrupted in the middle, one of the WC entries could be partially filled. The WCB
(including the partially filled entry) could be flushed by the OS kernel code or by other processes.
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the
other entry. Note that the resumed context could be interrupted again in the middle of filling up the
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC
buffer is flushed is random.

WCB eviction is performed for full lines by a single 128-bit bus transaction. For partially full lines,
the WCB is evicted using 1-8, 16, or 32-byte transactions with the proper enables. The flushing
will issue the largest data transactions allowed by a continuous and aligned set of write coalescing
data. When flushing, WC transactions are given the highest priority of all external bus operations.

5.7 Register Stack Engine

The Itanium 2 processor register stack engine (RSE) only operates in lazy mode (ar.rsc.mode
= 0). All other mode configurations are ignored.

A maximum of two loads or two stores can be performed by the RSE in each cycle, but not both
loads and stores at the same time.

Generally, it is assumed that the RSE loads and stores will hit in the L1D cache and the L1D is
capable of holding RSE cache lines in L1D.
5-8 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem 6

The Itanium 2 processor memory system has a three-level cache structure: a first-level instruction
cache (L1I), a first-level data cache (L1D), a unified second-level cache (L2), and a unified
third-level cache (L3).

The following sections contain detailed information on the workings of the L1D, L2, L3, and
system bus. This information is presented to give a basis for the optimization recommendations.
However, it is necessary to give enough understanding to recognize bottlenecks that are not
specifically covered in this document. Chapter 9, “Optimizing for the Itanium® 2 Processor”
provides some important suggestions in optimizing for the Itanium 2 processor memory
subsystem.

The Itanium 2 processor employs a two-level TLB for both instruction and data references: the
first-level instruction TLB (L1 ITLB) and the second-level instruction TLB for instructions, and
the first-level data TLB (L1 DTLB) and the second-level data TLB.

The Itanium 2 processor implements all the features of the Itanium architecture requirements for
virtual memory support. Table 6-1 lists the specific parameters of the Itanium 2 processor
implementation.

Figure 6-1. Three Level Cache Hierarchy of the Itanium® 2 Processor

001228a

Memory
and I/O

System
Bus

Control
Logic

6.4 GB L3 6 MB
128 Byte Line

14+ Cycle

L2 256 KB
128 Byte Line

5+ Cycle

32 GB L1I 16 KB
64 Byte Line

1 Cycle

L1D 16 KB
64 Byte Line

1 Cycle

32 GB

16 GB

Itanium® 2 Processor

32 GB

Table 6-1. Itanium® 2 Processor Virtual Memory Support

Virtual Memory Itanium® 2 Processor Implementation

Page Size 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and 4G bytes

Physical Address 50 Bits

Virtual Address 64 Bits

Region Registers 8 registers with 24 bits in each register

Protection Key
Registers

16 registers with 24 bits in each register
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-1

Memory Subsystem
6.1 Translation Lookaside Buffers

Table 6-2 shows the major features of the TLBs of the Itanium 2 processor. The capabilities of the
instruction and data TLBs are approximately equivalent. The first level TLBs are closely tied to the
first level instruction and data caches. This is necessary to support the single cycle access for the
L1 caches and comes at the price that a first level TLB miss forces a first level cache miss.

6.1.1 Instruction TLBs

The L1 ITLB has 32 fully associative entries and is dual ported. One port is used exclusively for
regular instruction fetches. The second port is shared among instruction prefetches, snoops, and
TLB purges. The L1 ITLB contains sufficient information, region registers, and protection keys,
such that it does not need to be a strict subset of the larger L2 ITLB.

When an L1 ITLB page translation is replaced, all entries in the L1I cache from the victimized
page are invalidated. The victim entry is determined using true LRU. The L1 ITLB directly
supports only a 4KB-page size. Other page sizes are indirectly supported by allocating additional
L1 ITLB entries as each 4KByte segment of the larger page is referenced.

The L2 ITLB has 128 fully associative entries and is single ported. Up to 64 entries of the L2 ITLB
can be assigned as translation registers (TRs). TRs are effectively translations locked into the L2
ITLB and are therefore not subject to LRU replacement policy. The L2 ITLB directly supports
page sizes of 4KB, 8KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB, 1GB, and
4GB.

The L1 ITLB and L2 ITLB are accessed in parallel for demand fetches to reduce an L1 ITLB miss
(and associated L1I cache miss) penalty. If an instruction access misses in the L1 ITLB, but hits in
the L2 ITLB, the first-level instruction cache access will have two cycles of penalty (in parallel
with the second-level cache latency) to transfer the page information from the L2 ITLB to the L1
ITLB. Since an L1 ITLB miss results in an L1I cache miss, the penalty will likely be greater as the
instruction must be accessed from higher-level caches or the system memory.

6.1.2 Data TLBs

The L1 DTLB has 32 fully associative entries and is dual ported. Only two ports are required
because it supports only integer load operations. Unlike the L1 ITLB, the L1 DTLB lacks
protection and page attribute information. Consequently, the L1 DTLB is accessed in parallel with
the DTLB and must be a strict subset of the second-level DTLB for an L1D hit.

When an L1 DTLB page translation is replaced, all entries in the L1D from the victimized page are
invalidated. The L1 DTLB has a fixed page size of 4KB. Larger page sizes are supported by
allocating additional L1 DTLB entries as a 4KB portion of the larger page.

Table 6-2. Major Features of Instruction and Data TLBs

Instruction TLBs Data TLBs

Structures L1 ITLB, L2 ITLB L1 DTLB, L2 DTLB

Number of Entries 32, 128 32, 128

Associativity Full, Full Full, Full

Penalty for First Level Miss 2 cycles 4 cycles
6-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
The L2 DTLB has 128 fully associative entries and four ported. The four ports are needed to allow
all combinations of integer loads, stores and floating-point loads to be looked up in parallel. The
integer loads rely on the L2 DTLB for protection and page attribute information. The other
accesses get virtual to physical mapping, protection, and page attributes from the L2 DTLB.

Up to 64 entries of the L2 DTLB can be assigned as TRs. TRs are effectively translations locked
into the L2 DTLB and are therefore not subject to LRU replacement policy. The L2 DTLB directly
supports page sizes of 4KB, 8KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB,
1GB, and 4GB.

Stores or floating-point accesses that miss the L1 DTLB incur no penalty from an L1 DTLB miss.
Integer loads that miss the L1 DTLB but hit the L2 DTLB incur a 4-cycle penalty (in addition to
the L2 cache latency) to transfer from the L2 DTLB to the L1 DTLB. Also, a load access that
misses the L1 DTLB will not hit in the L1D.

6.2 Hardware Page Walker

The HPW is the third level of address translation. The HPW is an engine that performs page
look-ups from the virtual hash page table (VHPT). When an L2 DTLB or L2 ITLB miss is
encountered, the HPW will access (as necessary) the L2 cache, the L3 cache, and finally memory
to obtain the page entry. If the HPW cannot locate the page entry in the L2, the L3, or memory, an
interruption is generated and a software handler is called to complete the translation (unless the
requesting instruction defers the exception). The HPW will accept a new instruction TLB miss
when processing a data TLB miss (and visa versa); however, the HPW will not process them at the
same time. The requests are effectively serialized.

Cache accesses must wait for TLB resolution to complete:

• L1D accesses both L1 DTLB and L2 DTLB in parallel.

• L1I accesses only require an L1 ITLB lookup (an L2 ITLB lookup is required upon an L1
ITLB miss).

• L2/L3 data access only require an L2 DTLB lookup.

• L2/L3 instruction accesses only require an L2 ITLB lookup.

When an L2 DTLB or L2 ITLB miss occurs, an HPW lookup is performed. This HPW walk may
be aborted at any time. For non-speculative memory requests, when the HPW aborts or cannot
successfully map the virtual address, a fault is raised. For speculative memory requests, the actual
request is aborted and the ld.s will set the NaT bit. The minimum penalty for going to the HPW
is summarized in Table 6-3. A HPW lookup does not look in or cause a fill of the L1D cache.

Since an L2 DTLB or L2 ITLB miss also implies a miss in the L1D or L1I, the penalty shown in
Table 6-3 has the best case L2 cache latency added to the HPW walk latency.

Table 6-3. Best Case HPW Penalties

Event Penalty in Cycles

Hit in L2 25

Miss in L2, hit in L3 31

Miss in both L2 and L3 20 + Main memory Latency
(System dependent)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-3

Memory Subsystem
6.3 Cache Summary

Table 6-4 summarizes the key parameters of the on-chip caches of the Itanium 2 processor.

6.4 First-Level Instruction Cache

The first-level instruction cache (L1I) is a 16KB, four-way set associative, physically addressed
cache with a 64-byte line size. Lower virtual address bits 11:0, which represent the minimum
virtual page, are never translated and are used for cache indexing. The L1I can fill a 64-byte line
once every two cycles. It blocks on-demand fetch misses but is non-blocking for prefetch misses
allowing up to seven to be outstanding to the L2 cache.

HPW Abort OS trap/abort

HPW mapping failed OS trap/abort

Table 6-3. Best Case HPW Penalties (Continued)

Event Penalty in Cycles

Table 6-4. Cache Summary

L1I L1D L2 L3

Size 16 KB 16 KB 256 KB 3 MB or 1.5 MB

Associativity 4-way 4-way 8-way 12-way

Line size 64 Bytes 64 Bytes 128 Bytes 128 Bytes

Latency 1 cycle 1 cycle Minimum 5 cycles
integer load use.

Minimum 6 cycles
floating-point load
use.

7 cycles with 6 cycle
stall penalty in ROT
stage for instruction
load use.

Minimum 12 cycles
load use.

Tag Read
Bandwidth

2 / cycle 4 / cycle 4 / cycle 1 / cycle

Data Read
Bandwidth

1 X 32B / cycle 2 X 8B / cycle 2 x 16B / cycle + 2x
8B1

1. The L2 read bandwidth is 48 bytes/cycle because the L2 can complete 2 ldfpd and 2 integer loads at a time. Any combination
of 4 floating-point and integer returns may also complete every cycle.

1 x 32B / cycle

Data banks n/a 8 bytes/bank

(store only)

16 bytes/bank n/a

Write Bandwidth n/a 2 x 8B / cycle 4 x 16B / cycle 1 x 32B / cycle

Fill Bandwidth 64 bytes
assembly 2 cycles
write - 1 cycle

64 bytes
assembly 2 cycles
write - 1 cycle

128 bytes
assembly 4 cycles
write - 1 cycle

128 bytes in 4
cycles

Outstanding
Misses

7 prefetches 8 unique lines 16 unique lines 22 (16 read shared
with L2, 6 write)

Line Size 64 Bytes 64 Bytes 128 Bytes 128 Bytes
6-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
The L1I can sustain a rate of 32-byte reads per cycle to support a fetch rate of two bundles per
cycle. The front-end always fetches aligned 32-byte bundle pairs from the L1I. If a branch points to
the middle rather than the beginning of a 32-byte bundle pair, only the second bundle will be
fetched. Therefore, branch targets must be on aligned 32-byte boundaries to achieve maximum
fetch bandwidth from the L1I.

The tag array is dual-ported: one port is dedicated to instruction demand fetches, the other is shared
between cache snoops and instruction prefetches. Cache snoops have priority over prefetches. The
data array is dual ported, one for reading, one for fills. Additionally, special effort has been made to
allow L1I reads and fills to occur simultaneously, thus there are few events that can keep an L1I
miss from eventually writing into the L1I.

6.5 Instruction Stream Buffer

The Itanium 2 processor instruction stream buffer (ISB) is located between the L1I and the L2
caches. It serves as a line fill buffer for the L1I and assists in instruction prefetching. The ISB
contains eight 64-byte cache lines or 8 double bundle pairs of instructions and is fully associative.

L1I lines returned from the L2, whether demand misses or prefetches, are all stored in the ISB. If a
returned cache line is a demand miss, it will be forwarded to the instruction pipeline and may be
moved into the L1I. The cache line remains in the ISB until an idle period where can drain into the
L1I. The ISB entry may be victimized or invalidated before this move occurs preventing the L1I
fill from occurring. The L1I supports both reads and fills at the same time, hence their ISB entries
empty quickly into the L1I and few ISB victimizations or invalidations will occur.

The ISB is accessed in parallel with the L1I. An ISB hit has the same latency as an L1I hit. If the
target line hits both the ISB and the L1I, the matching line in the ISB is invalidated.

6.6 First-Level Data Cache

The first-level data cache (L1D) is a multi-ported, 16KB, four-way set associative,
physically-addressed cache with a 64-byte line size. The L1D is non-blocking and in-order. Lower
virtual address bits 11:0, which represent the minimum virtual page, are never translated and are
used for cache indexing.

The L1D is designed such that there are two dedicated load ports and two dedicated store ports.
These ports are fixed, but the issue logic can rearrange loads and stores within an issue group to
ensure they issue to the appropriate memory port. The load ports are dual ported, meaning that any
two load addresses can be read from the memory in parallel without conflict. Stores, however,
access the L1D data array in 8 groups that are 8 bytes wide. Stores do have the potential for
conflicts, but the store buffer coalescing hardware limits the impact such conflicts have on
performance.

The access latency of the L1D is one cycle unless the use is for an address of another load
operations (i.e. pointer chasing) in which case it is two cycles. The L1D enforces a write-through,
with no write-allocate policy. All stores will go to the L2 cache whether they hit or miss in the
L1D. If a store hits in the L1D, the data is kept in a store buffer until the data arrays become
available to update the L1D. These store buffers are capable of merging store data and forwarding
it to later loads with restrictions. The L1D allocates on load misses according to temporal hints,
load type, and available resources.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-5

Memory Subsystem
The L1D is highly integrated into the integer data path. All integer loads must go through the L1D
to return data to the integer register file/bypass network. Consequently, integer L1D misses, after
being serviced by L2, L3, or memory, also use the L1D datapath to the integer register file and
block any core load that may require the same L1D data path.

Floating-point loads do not access the L1D. This allows them to issue on any of the four memory
ports with minimal restrictions. Floating-point load-pairs and any floating-point loads with ALAT
interactions can only be dispersed on the load ports. Despite the fact that lfetch instructions do
not deliver data to the core, they can only be issued on the two load ports because they may cause
an L1D fill and that capability is only provided on the two load memory ports.

An unaligned data reference exception will be raised if an unaligned integer load crosses an 8-byte
boundary. See Section 5.5, “Data Alignment” for more details about alignment support.

6.6.1 L1D Loads

When a core load request gets access to the L1D, it will access the L1D tag and data arrays at the
same time. Rotators at the output of the L1D data array provide support for both little and big
endian accesses as well as some unaligned accesses without penalty. A virtual to physical mapping
must be in the L1 DTLB and L1D tags for a load request to be a L1D hit. If the load is a miss or is
forced to miss the L1D, then the request is passed on to the L2 when there are sufficient resources.
The miss may result in a L1D fill depending on resources and cache hints. At minimum, all L1D
misses eventually update the target register. Floating-point loads and ordered operations are forced
to miss the L1D, but will not cause an L1D fill.

The L1D has resources for up to 8 outstanding L1D fill-requests to the L2. If more than 8 misses
are outstanding, the subsequent misses will be passed to the L2, but will not result in an L1D fill. If
two or more accesses miss the L1D and are accessing the same L1D line, only one will request an
L1D fill but will be passed to the L2 cache to be satisfied.

6.6.2 L1D Stores

All store requests are passed to the L2 cache since the L1D is a write through cache. A store that
misses the L1D has no effect on the L1D. However, if the store is a hit, the L1D must update the
data array so that later loads can see the new data. To support this, the store data is read from the
source register and staged down the L1D pipeline. Each store pipeline (M2/M3) has independent
store buffers and control logic.

When the data is ready to update the L1D data array, it is allowed to do so provided there are no
conflicts. Other operations writing the data array at the same time, such as an L1D fill, a load
accessing the same 8-byte bank, or a store to the same bank, may prevent the needed update. In this
case, the store data is moved to a backup buffer and waits for the array to become available. The
store buffer can coalesce younger stores accessing the same L1D 8-byte wide data bank. If the
backup buffer cannot update the data array and is needed by a new store that it cannot coalesce, the
L1D pipeline will stall to create an opportunity for the backup buffer to drain.

Given this organization, it may be better for stores targeting the same group to issue down the same
L1D pipeline. For example, it would be better to have all accesses to bank 0 to issue down M2 and
all accesses to bank 1 to issue down M3. Thus, when it comes time to update the array, M2 and M3
will not conflict and will be allowed to update without delay.
6-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
6.6.3 L1D Load and Store Considerations

Some memory requests may affect each other even when separated in time. This section covers
some possible load/load, load/store, store/load, and store/store interactions for both the L1D hit and
miss cases. Each discussion will have a summary and a suggested solution.

6.6.3.1 Load/Load Conflicts

Load requests that hit in the L1D have no conflicts with each other because the L1D is true dual
ported. However, a load request that misses the L1D may have conflicts at the L2 due to bank
conflicts. If low latency is needed, special care should be taken to avoid loads in the same issue
group that access the same L2 bank, i.e. A[7:4] should be unique for L2 bound accesses.

A less obvious load/load conflict can occur when a load is waiting to issue to the L1D, but is
preempted by an older load returning from the L2/L3 or system bus. Here, the older load is given
priority and the younger load must wait. These events are difficult to predict and hence difficult to
schedule around. However, the L2 cache will only take the M1 port if there is only one integer load
to return in a cycle. Thus, a conflict can be avoided by not using the M1 port for loads. This should
not be done if it adds to the critical path.

This same conflict may exist between loads and special requests that use the L2 data paths to get
information to the core. These are the probe, thash, ttag, tpa, and tak instructions.

6.6.3.2 Load/Store Conflicts

A load and store conflict has very different implications depending on which occurs first, the load
or the store. Despite the fact that issue groups are inherently parallel, loads and stores are ordered
according to position in the issue group.

When a load precedes a store and the load is a hit, there are no conflicts. However, there are
significant implications when the load precedes the store and they are both L1D misses. In this
case, the load will miss the L1D and likely request an L1D fill. The store, if it is seen by the L1D
before the fill associated with the load, will be an L1D miss. As such, the store will invalidate the
L1D associated fill buffer entry and stop the L1D fill from occurring. This is necessary because
there is no opportunity for the store to update the incoming data before the L1D fill. The Itanium 2
processor must ensure that a later load sees an earlier store, so the fill is cancelled and the merge of
the store with the cache line is taken care of by the L2. If the fill occurs before the store, then the
fill completes and a normal store update of the L1D is done. These statements are true if the load
and store share A[49:6] (a full L1D cache line).

One method to avoid this issue is to place a use of the load result before a conflicting store. This
ensures that the data is filled into the L1D. Once the L1D is filled, the store updates the L1D and
proceeds on to the L2 cache. This suggestion may not be appropriate for single load accesses or
when the L1D line is not accessed again after a conflicting store.

6.6.3.3 Store/Load Conflicts

When a store precedes a load, the store data must be seen by the load. In the case where the
requests are L1D misses, the L2 ensures this occurs. When the operations are L1D hits, the
response to the load depends on the common address bits and how many cycles separate the store
and load.

Table 6-5 shows the different store/load penalties. The penalty may depend on whether the load
accesses the same data as the store, a subset of the store’s data, or is completely independent of the
store.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-7

Memory Subsystem
The 5 and 17 cycle penalties are due both to the load being forced to miss the L1D and to the load
and store facing L2 conflict conditions. The 3 and 1 cycle penalties are due to the L1D recirculating
the load request until the distance between the load and store exceeds 3 cycles. This allows time for
the L1D to update the data array with the store data and allow the load to proceed as if there was no
store.

To avoid store/load conflicts, the store and load must be separated by more than 3 cycles. If more
than 3 cycles separation is difficult to achieve, then ensure at least 1 cycle separation.

6.6.3.4 Integer and Floating-Point Access Interactions

Floating-point loads and stores are passed directly to the L2 and bypass the L1D. If a floating-point
store occurs to a line which is resident in the L1D cache, that L1D line will be invalidated. This can
cause problems when integer and floating-point data share the same L1D cache line. This is
possible when both integer and floating-point data exist in the stack or as part of the same data
structure. Suppose that both an integer value and a floating-point value share the same 64-byte
aligned block. An integer load will bring the line into the L1D. A later floating-point store will
write to L2 and invalidate the L1D line. Thus, a subsequent load of the integer value will miss the
L1D.

This may be mitigated by bringing the line back into the L1D through an lfetch after issuing the
store or by using .nt1 hints on the integer accesses to keep them from filling the L1D and
scheduling them for L2 latency.

6.6.3.5 Store/Store Conflicts

The L1D is true dual ported for loads, but only pseudo-dual ported for stores; two stores cannot
update the exact same location in the data array at the same time (see Section 6.6.2, “L1D Stores”).
The store buffer design, with coalescing, prevents most store/store conflicts for L1D store hits. The
exception is that two stores cannot update the same L1D bank at the same time. Should there be a
conflict, the younger store will move into a store buffer and may later update the L1D data array
without impacting the L1D pipeline. However, if the store buffer is unavailable, the L1D will stall
until the store buffer is drained. The conflict does not exist if either of the two stores misses the
L1D. Note that the two stores do not need to access the same L1D cache line to conflict.

6.6.4 L1D Misses

When an L1D request misses, it is passed on to the L2 once the L2 has sufficient resources
available to hold the new request. The resources include at least an L2 OzQ entry and an L2 Data
entry. A L2 Data entry must be available even for a load to be accepted. If either the L2 OzQ or
Data is full, the operations and every other operation in the issue group will stall until these
resources are made available.

Table 6-5. Store to Load Forwarding Penalties

Store Precedes Load Loads Accesses Bytes
Completely Within Store

Load Accesses Bytes
Partially Within Store Address Comparison

0 cycles 17 cycles 17 cycles 11:2

1 cycle 3 cycles 5 cycles 11:2

2 cycles 3 cycles 3 cycles 49:2

3 cycles 1 cycle 3 cycles 49:2
6-8 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
The L2 control logic reserves some L2 OzQ entries to ensure that when a request is allowed to
leave the L1D pipeline, there is an L2 OzQ entry available for it. The logic reserves four entries for
every cycle of ambiguity which is three cycles. The result is that in some instances, such as
streaming, only about 20 of the 32 L2 OzQ entries are available. The Itanium 2 processor only
stalls the L1D pipeline when the L2 is full and there is a request in the L1D that needs to go to the
L2.

6.6.4.1 L1D Forced Misses

There are some load instructions that are forced to miss the L1D. A floating-point load will always
miss the L1D. An ordered load (ld.acq) is allowed to hit in the L1D, but if it does miss the L1D,
all subsequent loads, regardless of address or ordering constraints, will be forced to miss the L1D
until the L2 indicates that the ordered load is visible.

6.6.4.2 L1D Forced Invalidates

Just as some operations are forced to miss the L1D, some operations will invalidate the L1D. A
floating-point store will invalidate the L1D if it is a L1D hit. Ordered stores and semaphores will
also invalidate the L1D if they hit in the L1D to ensure that ordering is maintained.

6.7 Second-Level Unified Cache

The second-level unified cache (L2) cache is a unified, 256 KByte, 8-way set-associative cache
with a line size of 128 bytes. The L2 tags are true four ported and are accessed as part of the L1D
pipeline. The L2 employs write-back and write-allocate policies. The integer access latency to the
L2 is 5, 7, 9 or greater cycles. Floating-point accesses take 6, 8, 10, or greater cycles, which
includes the floating-point conversion stage. An L1I miss that hits in the L2 and uses the L2
5-cycle bypass incurs a 7-cycle latency with a 6-cycle stall penalty.

The L2 cache is non-blocking and out of order. All memory operations that access the L2 (L1D
misses and all stores) check the L2 tags and allocate into a 32 entry queuing structure called the L2
OzQ. All stores require one of the 24 L2 data entries to hold data to eventually update the L2 data
array. The operations issue, up to four at a time, to access the L2 data array when conflicts are
resolved and resources are available. L1I instruction misses are also sent to the L2, but are stored in
the Instruction Prefetch FIFO (IPF). The L2 OzQ and IPF requests arbitrate for access to the data
array and the L3/system bus.

The L2 data array has 16 banks which are each 16 bytes wide. This allows for multiple
simultaneous accesses provided each access is to a different bank. Floating-point loads may issue
from the L2 OzQ and access the L2 data array four at a time since the L2 has four datapaths to the
FP units and register file. The L2 does not have direct datapaths to the integer units and register
file; integer loads deliver data via the L1D, which has two datapaths to the integer units and register
file. Stores may issue from the L2 OzQ and access the L2 data array four at a time provided they
are all to different banks.

The fill path width from the L2 to the L1D and the L1I is 32 bytes. The fill bandwidth from the L3
or memory to the L2 is 32 bytes per cycle. Four 32-byte quantities are accumulated in the L2 fill
buffers, then the 128-byte cache line is written into the L2 in one cycle, thus updating both tag and
data arrays. Note that an NRU algorithm is used for cache line replacement.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-9

Memory Subsystem
The L2 cache is not inclusive of the L1D and L1I caches. The L2 maintains state information for
each line, tracking if the data stored is modified (M), exclusive (E), shared (S), invalid (I), or
pending update (P). This allows the L2 to use the MESIP protocol to maintain cache coherency and
track victimized lines.

6.7.1 L1D Requests to L2

Every cycle, the L1D may issue up to four requests to the L2. These requests may be L1D
load/store misses, L2 recirculates, L2 fills, instruction fetches, or snoops. The L2 tags are true four
ported and are part of the L1D pipeline. This allows all four L1D load or store requests to access
the L2 tags and determine if they are an L2 hit or miss before being allocated into the L2 queuing
structures. This feature allows L2 misses to be identified and quickly passed on to the system
bus/L3. It also lowers the latency of L2 hit requests.

All L1D load, store, semaphore requests are placed in the L2 OzQ. All L1I instruction misses,
which are issued through the L1D to the L2, are placed in the IPF where they arbitrate against the
L2 OzQ for access to the L2 data arrays and the system bus/L3. Other requests coming from the
L1D such as snoops and fills are transitory and are not queued.

Read (load) operations of the L2 data array occur two cycles before a write (store) of the L2 data
array. This timing relationship becomes important when determining load/store data array
conflicts.

The L2 provides 16 fill buffers to track L2 misses. Each L2 miss may result in modified data
eviction. The L2 provides 16 victim buffers to hold victim data; however, only 6 L2 victims may be
outstanding at a time.

6.7.2 L2 OzQ

The non-blocking nature of the L2 is made possible by the L2 OzQ. This structure holds up to 32
operations that cannot be satisfied by the L1D. These include all stores, semaphores, uncacheable
accesses, L1D load misses, and L1D unresolved conflict cases. The L2 cache design requires fewer
than 32 L2 OzQ entries to hold the maximum number of L1D requests in conflict-free cases.
However, there are many conflict cases within the L2. These cases may increase request lifetimes
in the L2 OzQ. Thus, the additional entries allow the L1D pipeline to continue to service hits and
make additional requests of the L2 while the L2 resolves the conflicts. The conflicts increase the
L2 latency and make L2 latency prediction impossible.

6.7.2.1 L2 OzQ Allocation and Deallocation

The L2 OzQ control logic allocates up to four contiguous entries per cycle starting from the last
entry allocated the previous cycle. If there are too few entries available, the L1D pipeline is stalled
to prohibit any additional operations being passed to the L2. Requests are removed from the L2
OzQ when they complete at the L2 - that is when a store updates the data array, when a load returns
correct data to the core, or when an L2 miss request is accepted by the system bus/L3.

6.7.2.2 L2 OzQ Behavior

The L2 OzQ control logic enforces architectural ordering requirements; and in instances where the
architecture allows, operations may complete out of order. An operation blocked due to conflict or
issue restrictions does not block younger operations from completing. This allows for high
resource utilization within the L2 resulting in a performance benefit. Additionally, the out-of-order
6-10 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
issue allows the L2 to quickly recover from circumstances where the L2 control logic was
temporarily not able to retire requests.

The out-of-order and non-blocking nature of the L2 OzQ has the effect of removing any time
relationships between operations. For example, if the code generator separates two operations by
4 cycles, they will appear 4 cycles apart in the L1D pipeline. However, conflicts may keep the first
operation from issuing immediately and force it to wait in the L2 OzQ. This situation may result in
the second operation actually completing in the L2 before the first operation, assuming no ordering
restraints, despite their 4 cycles of separation in the code stream.

The latencies of the L2 hit accesses are typically 5, 7, or 9+ cycles. These several latencies arise
from the fact that some operations can issue and access the L2 data array at different times
depending on the resources required and what preceded the request. The lower latencies come from
allowing L1D request to access the L2 data array before they are allocated in the L2 OzQ. These
are the 5- and 7-cycle L2 OzQ bypass. All latencies listed as 9+ are for operations that cannot take
these bypasses and must allocate into the L2 OzQ and then later issue from the L2 OzQ to access
the L2 data array.

6.7.2.3 5- and 7-Cycle Bypass

New L1D requests may take the 5-cycle bypass of the L2 OzQ and issue directly to the L2 data
array provided there are no conflicts with older operations in the L2 OzQ. This bypass may be
granted to the entire issue group provided there are no conflicts within the issue group. If a conflict
occurs, the older request will take the bypass while the younger requests may not. Semaphores will
never take a 5 or 7 cycle bypass and have a minimum latency of 9 cycles.

L2 bank conflicts will be discussed in Section 6.7.3, but they are used here in an example of how
the L2 re-orders request to give the lowest possible latency. Conflicts typically are due to multiple
requests for the same L2 data array (bank conflict). Consider the an L1D request (issue) group
below:

ldfs f20 = [0x004] (L2 Bank 0)

ldfs f21 = [0x008] (L2 Bank 0)

ldfs f22 = [0x00c] (L2 Bank 0)

ldfs f23 = [0x010] (L2 Bank 1)

The first load will take the 5-cycle bypass. The bank conflict between the first and second load will
prohibit the second and third loads from taking the 5-cycle bypass. The fourth load will also take
the 5-cycle bypass since there is no bank conflict with the older requests or architectural ordering
requirements.

When a request is kept from taking the 5-cycle bypass, the next choice is the 7-cycle bypass. The
bank conflict between the second and third load will keep the third load from taking the 7-cycle
bypass.

The situation becomes more complicated when the instructions above are followed by more
instructions to be satisfied by the L2. Consider the issue group of loads from the previous example
which is immediately followed by the following issue group of loads:

ldfs f25 = [0x014] (L2 Bank 1)

ldfs f26 = [0x018] (L2 Bank 1)

ldfs f27 = [0x01c] (L2 Bank 1)

ldfs f28 = [0x020] (L2 Bank 2)

In this example, the f20 and f24 loads take the 5-cycle bypass. The f21, f22, and f23 loads will try
to take the 7-cycle bypass. However, before they can take the bypass, the new request group with
f25, f26, f27, and f28 comes along. In this issue group, f25 and f28 take the 5-cycle bypass. Doing
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-11

Memory Subsystem
so blocks the older issue group from taking the 7-cycle bypass. Those requests must then issue
from the L2 OzQ. This increases their minimum latency from 6 to 12 cycles. The latencies of the
operations would be as follows (noted in parenthesis after the load):

ldfs f20 = [0x004] (6)

ldfs f21 = [0x008] (12)

ldfs f22 = [0x00c] (13)

ldfs f23 = [0x010] (6)

ldfs f25 = [0x014] (6)

ldfs f26 = [0x018] (13)

ldfs f27 = [0x01c] (14)

ldfs f28 = [0x020] (6)

6.7.2.4 L2 OzQ Issue

Every cycle the L2 OzQ searches for requests to issue to the L2 data array (L2 hits), the system
bus/L3 (L2 misses), or back to the L1D for another L2 tag lookup (recirculate). See Section 6.7.3
for more information on L2 cancel conditions and Section 6.7.4 for more information on L2
recirculate conditions.

The L2 can issue up to four L2 hit accesses per cycle provided there are no conflicts among them or
among earlier issued operations. The conflicts for L2 hits include L2 data array banks, register port,
L1D fill, and ordering. In the case of the L1D fill, only one such load may issue. Also, since the L2
uses the L1D register return paths for loads, only two loads can issue per cycle.

The L2 can issue only one access to the system bus/L3 at a time. An L2 miss in the same L1D
request group as an L2 hit should be on the M0 port to have the shortest L3 latency. If the miss is on
another port, its latency will increase slightly.

The system bus/L3 control logic will then either accept or reject the request based on system
bus/L3 resources and conflict cases. Once the request is accepted, it may be removed from the L2
OzQ. The L2 OzQ pipelines L2 miss requests; it does not wait for the system bus/L3 to accept a
request before issuing another request.

6.7.3 L2 Cancels

The L2 cancels generally apply only to requests taking a 5 or 7 cycle L2 OzQ bypass. This is
because in most cases, the issue logic considers the conflict cases and holds off issue until the
conflict is resolved. The best example of holding off issue from the L2 OzQ are bank conflicts. All
the information needed to avoid all possible issue time conflicts may not be available and some L2
OzQ issued requests must be later cancelled and re-issued. When an operation taking a bypass gets
cancelled, it will re-issue from the L2 OzQ since the bypasses are only available to L1D request
groups. When an L2 OzQ request is issued and then later cancelled, its latency will increase by four
cycles.

The cancel logic may also cancel or block issue in more instances than expected due to issue logic
simplification or unavailable information. For example, requests that are recirculated will be
included in cancel/block calculations for other instructions considered for issue, or the issue logic
will try to issue up to four requests that need to recirculate even though it cannot recirculate more
than one request.

A 5 or 7 cycle bypass is more likely to be canceled for P3 operations because it is the youngest in
the issue group and due to events external to the L2 such as System Bus/L3 returns and snoop
requests. P0 requests are the least likely to be canceled because these are the oldest instructions in
the issue group.
6-12 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
There are many reasons to cancel or block L2 OzQ issue. The reasons are placed into two
categories: those that are predictably avoidable and those that are not.

6.7.3.1 Predictably Avoidable Cancel Conditions

L2 Data array conflicts: The data array has 16-byte wide banks. Bits 7:4 of the address determine
the bank. Any requests with the same bank, regardless of cache line, are candidates for a bank
conflict. Any L1D request group with multiple loads targeting the same bank will see the younger
requests cancelled or the L2 OzQ issue blocked. This also applies to multiple stores targeting the
same bank.

Since L2 loads and stores access the L2 data array at different times, a load and store in the same
request group cannot have bank conflicts; however, there is potential for load and store bank
conflicts between entirely different L1D request groups. Store requests access the data array three
cycles after a load would. This means that a store issued at time X may block or cancel a load that
would issue at time X+3 if they both access the same L2 bank.

The following examples show how the conflict logic considers the L2 data array access time to
determine bank conflicts. The following two examples do not have bank conflicts:

ld8 r20 = [0x008] ;;

ld8 r21 = [0x010]

and:
st8 [0x008] = r20

ld8 r21 = [0x010]

However, the following example shows a bank conflict between the store and the last load, but not
between any other requests:

st8 [0x000] = r0 ;;

ld8 r19 = [0x000] ;;

ld8 r20 = [0x008] ;;

ld8 r22 = [0x110]

Bank conflicts due to L1D fill requirements are slightly less predictable. These bank conflicts arise
from the fact that an L1D fill requires 64 bytes of data and hence, four banks at a time.
Additionally, the data path to the L1D can only support one fill every two cycles. These are not
predictable because not all L1D misses will request an L1D fill. Section 6.6.1 has more information
on which requests can require an L1D fill.

6.7.3.2 Unpredictably Avoidable Cancel Conditions

There are some bank conflicts that are generally unpredictable. These events are tightly coupled
with the unpredictable events of system bus and L3 data returns. The unpredictable cancel
conditions may result in unexplained L2 latency increases.

6.7.4 L2 Recirculate

The L2 OzQ will need to recirculate requests whenever the request does not have a clear indication
of hit or miss, or the required resources to complete an L2 miss are unavailable.

The most predictable reason for a request to recirculate is that the request misses a line that is
already being serviced by the system bus/L3, but has not yet returned to the L2. The L2 only retires
L2 hits and primary L2 misses to an L2 line. It does not retire multiple L2 miss requests; additional
misses remain in the L2 OzQ and recirculate until the tag lookup returns a hit. The request then
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-13

Memory Subsystem
issues from the L2 OzQ and returns data (for a load) or updates the array (for a store) as a normal
L2 hit request.

6.7.4.1 lfetch and Recirculation

There is one significant exception to this secondary L2 miss recirculate condition. lfetch
instructions have been optimized to avoid allocation in the L2 OzQ if they meet the following
criteria:

• Secondary access to an L2 miss.

• Will not fill the L1D.

Since these lfetch instructions are not allocated into the L2 OzQ, they cannot recirculate. The
only way to guarantee that an lfetch instruction will not fill the L1D is to place temporal hints
such as .nt1, .nt2, or .nta.

6.7.5 Memory Ordering

Itanium architecture memory ordering requires that a request with acquire semantics must reach
visibility before any other younger operation. A request with release semantics must not reach
visibility before older operations.

The L2 issue logic enforces the architectural release ordering semantic by blocking issue of a
release request until it is the oldest operation in the L2 OzQ. The issue logic may issue a release
operation that is not the oldest, but then cancel and re-issue.

If the ordered operation is not an L2 hit, the L2 control logic can speculatively make a system
bus/L3 request of the line or transform the request to a prefetch. If the other L2 OzQ entries
proceeding the ordered request do not conflict, the prefetch will have the benefit of starting the
access early without violating ordering requirements. If there are conflicts, the request is re-issued
to ensure proper ordering.

Since the L2 is responsible for maintaining architectural ordering, all loads that are in the shadow
of a ld.acq must be seen by the L2. Thus, they are forced to miss the L1D until the ld.acq has
achieved visibility.

6.7.6 L2 Instruction Prefetch FIFO

The Instruction Prefetch FIFO (IPF) is an 8 entry queue to hold L1I requests. Up to seven of these
eight entries may contain prefetch requests. One slot is always reserved for a demand request. Just
like the L2 OzQ, the IPF can have requests that are L2 hits, L2 misses, bank conflicts, or
recirculates. The IPF faces the same issue restrictions for each of these requests as the L2 OzQ
does. However, unlike the L2 OzQ hit requests, only one IPF L2 hit may be issued to the L2 data
array per cycle. This is due to the fact that all IPF requests will return data to the L1I cache and the
data path back to the L1I can only support one fill per cycle.

Since the L2 supports both instruction and data accesses, all L2 issue control logic chooses among
instruction and data requests according to Table 6-6.
6-14 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
6.7.7 L2 Load and Store Considerations

Some memory requests may affect each other even when separated in time. This sections covers
some possible load/load, load/store, store/load, and store/store interactions for both the L2 cache.
Since the L2 OzQ allows out of order issuing, the L2 OzQ will re-order requests to fully utilize the
L2 data arrays in satisfying requests. As a result, any static timing place in the code stream may not
have the desired result on L2 behavior, however there are still actions the code generator can take
to increase performance.

6.7.7.1 Effective Releases

The L2 cache deals with load/store, store/load, and store/store conflicts by ensuring that the issue
order in the L2 OzQ is the same as the program order of the operations. The L2 control logic
leverages the architectural ordering mechanisms that already exist to address the possible conflicts.

When the L2 OzQ accepts a new request, it checks the physical address bit 49:2 against all older
incomplete requests in the L2 OzQ. If a match exists and a conflict results, the control logic applies
architectural release semantics to the incoming request. This is called effective release. The
effective release association remains until the operation completes and causes the L2 issue and
conflict logic to cancel the request until it is the oldest request in the L2 OzQ.

Table 6-7 summarizes the addresses and operation types that can experience an effective release.

6.8 System Bus/L3 Interactions

All requests that the L2 cannot satisfy reach the system bus/L3 as a Read Line (RL) or Read For
Ownership (RFO) request. The RL request is used for code and common load operations. The L2
may receive the line in M, E, or S for RL requests depending on L3 state or the snoop response
provided on the system bus. The RFO request indicates the L2 intends to modify the line to store

Table 6-6. L2 Issue Priorities

Priority Request

1 Demand Instruction Fetch (IPF)

2 Demand Instruction Fetch (7 cycle bypass)

3 Data (L2 OzQ)

4 Data (7 cycle bypass)

5 Prefetch Instruction Fetch (IPF)

6 Prefetch Instruction Fetch (7 cycle bypass)

7 Data (7 cycle bypass)

Table 6-7. Effective Release Operations

Incoming
Request

Matching
Request

Effective
Release

Load Load No

Load Store Yes

Store Load Yes

Store Store Yes
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-15

Memory Subsystem
data. Stores as well as lfetch.excl and ld.bias instructions result in Read For Ownership
requests. These requests will always exist in the M state in L2. Table 6-8 summarizes this behavior.

The L2 may make partial line requests of the system bus, but this is only for UC attribute accesses
and is not part of this discussion because they are neither coherent nor a concern for performance.

The L2 will make one RL or RFO to the system bus/L3 per cycle. Each of these requests will have
a dirty victim associated with it when the L2 way chosen for victimization is in the M state. The L2
issues a request to the system bus/L3 and then later confirms the request. This protocol exists to
allow issuing requests to the system bus/L3 that are later cancelled and/or recirculated. The L2 may
make a request, but will not confirm a request if there are insufficient resources available. The L2
will not issue two requests to the same L2 line. A request that is not confirmed will wait at least
four cycles before it is issued again.

The system bus/L3 will decide if the request is accepted and inform the L2 based on address
conflicts, available resources to support the read request and the associated dirty victim. The L2
will then deallocate the request from the L2 OzQ if the system bus/L3 accepts the request. An L2
request may be rejected (see Section 6.10). A rejected request will wait at least four cycles before it
is issued again.

When the system bus/L3 is ready to deliver data to the L2, it will be indicated to the L2 and the L2
will prepare to receive the data. The data returns come 32 bytes (a chunk) at a time from the system
bus/L3 with the critical chunk first. L3 returns have higher priority than system bus data returns
and come consecutively. In many instances, an L2 miss may also cause an L1D fill. Since the L1D
line width is only 64 bytes, there is sufficient data to cause an L1D fill when only two chunks have
been received from the system bus or L3. These requests must access the L1D pipeline and may
block core requests from entering the L1D pipeline during that cycle. If there are two L1D fills for
an L2 miss, another fill will occur when the last two chunks have been received by the L2.

6.9 Third-Level Unified Cache

The third-level unified cache (L3) is a unified, 6 MByte, 24-way set associative cache with a
128-byte line size. Some versions of Itanium 2 processor may have L3 caches of 4, 3, or 1.5 MByte
with set-associativity of 16, 12, and 6 way respectively. Latencies may also vary between the
different cache sizes. See Chapter 2 for exact latency numbers. These caches are alike in all other
respects.

All L3 accesses are for the entire 128 byte line – no partial line accesses are supported. The access
latency is 12, 14, or more cycles. This latency depends on how quickly the L2 issues the request
and the activity of the L3 at the time of the request.

Table 6-8. System Bus/L3 Requests and Final L2 State

L3/System Bus Request L2 Request
L3 State System Bus

S E M HIT No Hit

Read Line Code Read S E M S S

Data Read S E M S E

Read For Ownership store Miss M M M

n/alfetch.excl Miss M M M

ld.bias Miss M M M
6-16 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Memory Subsystem
On the Itanium 2 processor, L3 accesses are fully pipelined and thus have a much higher effective
bandwidth than the L3 on the Itanium processor. The L3 tag array is single ported and is pipelined
to allow a new tag access every cycle. The L3 data array is also single ported, but requires up to
four cycles to transfer a full line of data to the L2 cache or to the system bus in the case of an L3
dirty victim.

The L3 is non-blocking and has an 8-entry queue to support multiple outstanding requests. This
queue orders requests and prioritizes them among tag read/write and data read/write to achieve the
highest performance given the operations required.

6.10 System Bus

The Itanium 2 processor system bus operates at 200 MHz and is comprised of multiple sub-busses
for various functions, such as address/request, snoop, response, data, and defer. The data bus is 128
bits wide and operates source synchronously, achieving a peak bandwidth of 400 million memory
transactions or 6.4 GB per second.

The system bus control logic is an In Order Queue (IOQ) and an Out of Order Queue (OOQ),
which tracks all transactions pending completion on the system bus. The IOQ tracks the in-order
phases of a request and is identical to all processors. The OOQ contents hold only a processors
requests that are deferred. The IOQ can hold 8 entries while the OOQ can hold 18 requests which
allows for a maximum of 19 transactions to be outstanding on the system bus from a single
Itanium 2 processor.

L2 requests that have not been completed (i.e. have not accessed the L3 nor completed a data phase
on the system bus) are maintained in structures of the following sizes:

• 16 outstanding read requests from L2.

• 6 outstanding dirty writeback requests from L2.

• 6 outstanding L3 writebacks (i.e. replacement of a dirty line) to be serviced by the main
memory.

• A combination of 16 outstanding L3 writebacks or L3 castouts (i.e. replacement of a clean line
depending on the coherence mechanism, this might incur memory traffic) to be serviced by the
main memory.

• Two 128-byte coalescing buffers to support WC stores.

Read transactions (this includes store instructions that miss the L2) are placed in one of the 16 bus
request queues (BRQs). Each of these may then be sent to the L3 to see if the L3 can satisfy the
request. In the case where the request is also an L3 miss, the request is scheduled to generate a
system bus request (either Bus Read Line or Bus Read Invalidate Line for stores). When the system
bus responds with the data, the line is written to the L2 and L3 based on its temporal locality hints
and type of access.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 6-17

Memory Subsystem
6-18 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Branch Instructions and Branch
Prediction 7

The Itanium 2 processor employs both static and dynamic methods for branch prediction. For static
branch prediction, the Itanium 2 processor uses the hint completers from the branch instructions.
For dynamic prediction, the Itanium 2 processor uses several hardware structures.

This chapter describes how branch prediction affects software execution. The front-end instruction
fetching is decoupled from the back-end instruction execution through an 8-bundle instruction
buffer. For more detail regarding the instruction buffer, see Appendix A, “Itanium® 2 Processor
Pipeline.” Throughout this chapter, the term ‘bubble’ refers to cycles for which the front-end
cannot deliver useful data, because the penalty may never translate to a loss in performance if there
is another event blocking the back-end from retiring instructions. In the case where the back-end is
waiting for the front-end, the penalty is a stall.

Table 7-1, “Branch Prediction Latencies” summarizes branch prediction latencies for the Itanium 2
processor. Notice that in the case of a correctly predicted IP-relative branch, there is no front-end
bubble.

.

The branch prediction microarchitecture in the Itanium 2 processor is significantly different from
that of the Itanium processor. Branch prediction is closely tied to the L1I cache which allows for
the zero bubble resteer.

Single-cycle branches experience a stall once every two cycles (i.e. a one-cycle loop takes four
cycles to make three iterations). Single-cycle loops should be avoided. It is also possible that a stall
may occur if several branches are encountered in succession. For example, if the front-end sees a
branch every cycle for 3 cycles, one cycle of stall may occur.

Table 7-1. Branch Prediction Latencies

Branch Type Whether Prediction Target Prediction Penalty

IP-relative Correct Correct 0 Front-end bubbles

IP-relative Correct Incorrect 1 Front-end bubble

Return Correct Correct 1 Front-end bubble

Return Correct Incorrect 6+ Pipeline stalls

Indirect Correct Correct 2 Front-end bubbles

Indirect Correct Incorrect 6+ Pipeline stalls1

1. The + refers to the fact that some branches may cause the front-end to stall. This is only for incorrectly predicted short (up to
16 bundles) forward branches. The additional latency will be at most 8 cycles and may be less depending on how many
branches were seen by the front-end after the mispredicted branch was seen by the front-end.

Loop Incorrect N/A 7+ Pipeline stalls1

Any type Incorrect N/A 6+ Pipeline stalls1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 7-1

Branch Instructions and Branch Prediction
7.1 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
This information can be encoded through branch hints as part of a branch instruction. Branch hints
do not affect the functional behavior of the program and may be ignored by the processor.

Only hints specified within a branch instruction are used for branch prediction. Hints on the brp or
mov br instructions are ignored by the branch predictor.

For the Itanium 2 processor, branch hints are .sptk, .spnt,.dptk, or .dpnt (sp=static
prediction, dp=dynamic prediction, tk=taken, nt=not taken). The terms “static” and “dynamic”
hints refer to the code generator’s confidence in the branch behavior. For example, .sptk means
the code generator is very sure that the branch will be taken, whereas .dptk means that the code
generator thinks the branch will be taken, but it is not so confident.

The impact of these branch hints depends on other branches in the two-bundle window and other
branch information maintained in the processor. The consequence is that a branch with a .dpnt
hint may be predicted taken the first time seen. The processor will quickly recover from this and
correctly predict this branch in the future.

The use of .dpxx is recommended as default, unless the loop is a ctop or cloop in which case
.spxx is recommended.

The .spxx hint is also important for very short, 1 or 2 cycle, loops. With static prediction hints,
these loops will not wait for the machine to generate a new hint prediction, but will instead use the
take or not-taken from the static hint. If dynamic hints are used in the short loops, the processor
may stall each iteration that the branch prediction requires updating.

The branch prediction hints have a an anomalous behavior when used in .bbb bundles. Normally,
the branch hints of each branch instruction will effect only that specific branch. However, a .bbb
bundle will always use the branch hints provided on the slot 0 branch for the slot 1 and slot 2
branches. There are a few ways to avoid this. The first is to break up the .bbb bundle into two other
bundles. Unfortunately, this may not be good for code density and other solutions such as using a
.dpxx hint or a .spxx with a .clr completer on the slot 0 branch should be considered.

.

7.2 Indirect Branches

The predicted targets of indirect branches, other than returns, are extracted from the source branch
register of the indirect branch rather than from a hardware table. This has several implications.

There is always a penalty for indirect branches on the Itanium 2 processor. A two-cycle front-end
bubble is seen for a correctly predicted indirect branch. An incorrect taken/not taken or address
prediction is 6 or more pipeline stalls. The address prediction is based on the contents of the branch
register referenced by the branch as seen by the front-end. An in-flight update to the branch register
will not be seen by the front-end and the predicted target may be wrong. Correct target prediction
requires that the branch register write precede the indirect branch by several cycles. This distance
varies since the front and back-ends of the pipelines are decoupled. A code generator can minimize
the impact of this in the following ways:

• Separate the write and indirect branch by at least 6 front-end L1I cache accesses.

• Add an additional write to the branch register above the true branch register writer to hint the
target.
7-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Branch Instructions and Branch Prediction
• Use different branch registers for each indirect branch instance to minimize conflicts with
other indirect branches.

7.3 Perfect Loop Prediction

In many cases, the perfect loop predictor can correctly predict the back-edge branch of a counted
loop, i.e., cloop or ctop type branches, including the fall-through instance, as well as the loop
back iterations. Unlike the Itanium processor, the Itanium 2 processor does not need brp to
accomplish this.

The Itanium 2 processor uses the PLP only for the final iteration of the loop. The initial loop
predictions are decided on dynamic or static information based on the hints used.

If the last branch of a loop is predicted correctly, there might still be a one- or two-cycle bubble in
order to get this correct prediction. The smaller the number of loop iterations, the more likely it is
that there will be a two-bubble resteer. Conversely, the larger the loop iteration, the more likely it is
that there will be a zero-bubble resteer. The PLP uses the current values of ar.lc and ar.ec for
prediction, so any writers to these registers should be well ahead of the counted loop branch to
assure correct prediction.

In some instances, the Itanium processor required that ar.ec be set to 1 for correct prediction.
The Itanium 2 processor does not have this same requirement and actually expects ar.ec = 0
when there is no epilog.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 7-3

Branch Instructions and Branch Prediction
7-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Instruction Prefetching 8

The Itanium 2 processor supports several forms of instruction prefetching. Instruction prefetch is
defined to be the act of moving instruction cache lines from higher levels of cache or memory into
L1I. Streaming prefetching initiates hardware prefetching of the next cache lines, either sequential
or at the target of predicted taken branches. Hint prefetching allows software to specify a particular
line, or lines, to be prefetched. On the Itanium 2 processor, it is expected that instruction
prefetching will be an effective way to reduce instruction cache misses since the code generator has
a wide degree of control over the prefetch agent and the Itanium 2 processor cache design
specifically considered prefetching.

8.1 Streaming Prefetching

Streaming prefetching is initiated by using the .many completer on branch instructions. If the
front-end processes a branch with a .many completer, the prefetch engine will continuously issue
prefetch requests, at one request per cycle, for subsequent instruction lines, into the prefetch
pipeline. The prefetch request is checked against the L1I and the L1 ITLB. If it hits in the L1 ITLB
and misses in the L1I, the request is sent to the L2, otherwise it is discarded. The lines are
prefetched starting at the branch target plus 64 or 128 bytes (depending on the alignment of the
branch target). Streaming prefetching continues until one of the following stop conditions occurs:

• A predicted-taken branch is encountered by the front-end

• A branch misprediction occurs

• A brp instruction without the .imp completer is encountered by the front-end1

The L1I cache design allows both fill and lookups to occur at the same time. Thus, the lifetime of a
request in the ISB is typically very small. This allows the prefetch engine to prefetch instructions
with little chance that the line will get overwritten before it is used. If the branch is predicted taken
by the front-end, prefetching will be initiated in the front-end. If the branch is incorrectly predicted
not-taken by the front-end, prefetching will be initiated by the back-end when the prediction is
corrected. However, if the opposite case occurs, i.e. the branch is incorrectly predicted taken in the
front-end, prefetching will be terminated and it will NOT be restarted when the back-end corrects
the prediction. Finally, if the branch is incorrectly predicted-taken by the front-end, prefetching
will be terminated when the prediction is corrected by the back-end.

A .many prefetch stream may be halted by an L1I TLB miss. The event does not cancel the
prefetch, but suspends the prefetch until the L1I TLB fill completes at which point the prefetch
continues until stopped from one of the reasons described above.

1. A brp instruction suggests that an associated br.many is around the corner. The assumption is that the prefetch engine has already prefetched
past the br.many, and additional prefetches would be useless. The reason that a brp.imp does not terminate prefetching is related to Itanium®
processor code. In the Itanium processor, brp.imp instructions are used to predict branches and might not have any association with a
br.many.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 8-1

Instruction Prefetching
8.2 Hint Prefetching

Hint prefetching is initiated with the brp or mov br instructions. Unlike the Itanium processor,
the Itanium 2 processor prefetch initiation does not affect branch prediction state. However, it has
this same restriction as the Itanium processor: brp instructions must be on the last instruction slot
(slot 2) of a bundle in order to be processed; otherwise, it is ignored. brp instructions have no
associated branch prediction effects. Table 8-2 illustrates the prefetching mechanisms associated
with the branch hints.

A .few completer will prefetch one-half or one L2 line, depending on the alignment of the
associated branch target, and a .many completer will prefetch 1.5 or 2 L2 lines, depending on the
alignment of the associated branch target. Hint prefetches are sent to the 8-entry prefetch virtual
address buffer (PVAB). Up to 2 hint prefetches can be sent to the PVAB in each cycle.

In a given cycle, if the prefetch pipeline is not stalled and if a br.many is not active, a prefetch
request is removed from the PVAB. The prefetch request is then checked against the L1I and the L1
ITLB. If it hits in the L1 ITLB and misses in the L1I, it is sent to L2, otherwise it is discarded. The
intent is to use hint prefetches to prefetch the first “chunk” of instructions at the target of a branch
and to use streaming prefetching to prefetch the subsequent instructions. In order to fully hide the
latency of an L2 hit, a hint prefetch should precede a branch by 9 fetch cycles. If a br.many is
preceded by a brp.many, there will be some overlap between the prefetches generated by the two
instructions. While this overlap is wasteful, there is benefit in having more lines prefetched earlier
(as opposed to presaging the br.many by a brp.few). brp.few prefetches might be useful in
conjunction with streaming prefetches as described in Section 8.1.

Table 8-1. Summary of Streaming Prefetch Actions

Predicted Taken Predicted Not-Taken

Actually taken Any current streaming prefetch is stopped in the
front-end.

If the branch has a .many completer, a new
stream is started by the front-end.

Any current streaming prefetch is
stopped in the back-end.

If the branch has a .many completer, a
new stream is started in the back-end.

Actually
not-taken

Any current streaming prefetch is stopped in the
front-end. It is NOT restarted when the
misprediction is detected.

If branch has a .many completer, a new stream
is started in the front-end. It is terminated when
the misprediction is detected by the back-end.

No effect on any current streaming
prefetch.

A new stream in NOT started.

Table 8-2. Prefetch Mechanisms

Branch Hint Prefetch Mechanism

brp.(sptk,loop,dptk).few Normal prefetch of 1 cache line generated.

brp.(sptk,loop,dptk).many Prefetches 2 cache lines from target.

brp.(sptk,loop,dptk).imp.few Flushes prefetch virtual address buffer (PVAB) and prefetches 1 cache line.

brp.(sptk,loop,dptk).imp.many Flushes prefetch virtual address buffer (PVAB) and prefetches 2 cache lines.

move_to_br.(sptk,dptk).few All other fields ignored, prefetches 1 cache line.

.many hint Streaming prefetches triggered off predicted taken IP-relative branches.
8-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Instruction Prefetching
8.3 Prefetch Flush Hints

Certain forms of brp instruction have the side effect of flushing the contents of the PVAB and
possibly the prefetch pipeline. These are provided to give the compiler some control over the state
of prefetching.

• brp.few.imp - will remove all brp.few prefetches from the PVAB (but not any already in
the prefetch pipeline).

• brp.exit.imp - will remove all prefetches from the PVAB and those in the prefetch
pipeline, and additionally will stop the streaming prefetch engine (and therefore will stop
br.many, brp.many and brp.exit prefetching).

• brp.*.imp - (brp without the .imp completer) will cancel any streaming prefetches
initiated by a br.many instruction.The intent is to allow the compiler to stop a br.many
from prefetching too far.

The flushing side effect is in addition to the normal behavior of these prefetch instructions. Note
that flushing a prefetch once it reaches the pipeline may not be effective (i.e. the prefetch may still
be issued to the L2 and beyond).

8.4 The brl Instruction

The Itanium 2 processor implements the brl instruction that provides 64-bit relative branches.
These long relative branch instructions have less cost than in the Itanium processor, but they are
higher cost than the short relative branch br instructions. Specifically, the branch prediction
mechanisms in the Itanium 2 processor do not calculate the predicted target correctly for brl
instructions unless it is set when the L1I cache line is written. Thus, if a brl prediction target is
aliased with another branch in the bundle pair, the target will be incorrect and the branch will see a
full branch mispredict penalty and it will not be fixed.

The brl instruction is much more efficient than multiple short jumps despite this cost. However,
The linker should place brl instructions only where they are specifically needed.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 8-3

Instruction Prefetching
8-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Optimizing for the
Itanium® 2 Processor 9

This chapter is a summary of conclusions that can be drawn from important points noted in earlier
chapters. These guidelines are not applicable in all situations and profiling should be used to guide
the use of optimizations.

9.1 Hints for Scheduling

Observing the following heuristics whenever possible will minimize the chances of implicit stops
or unexpected dispersal related stalls:

• Schedule the most restricted instructions early in the bundle. This lessens the chance that a
generic subtype instruction will consume a port which is needed by a later more restricted
instruction.

• In some cases, placing A-type instructions in I slots rather than M slots might achieve denser
bundling. If this is done, place any I-type instructions (which must go in I slots) earlier in the
issue group when possible. This way, the later instructions in I slots can be issued to available
M ports. Since not all processors support this (such as the Itanium processor), it is preferable to
place A-type instructions in M slots.

• Most floating-point load types can be issued to any of the four memory ports, not just M0 and
M1. Control speculation-related (advanced and check) and pair floating-point loads are the
exceptions which can only be issued to ports M0 and M1. When scheduling a mix of FP loads,
advanced FP loads, integer loads, and lfetch instructions, ensure that regular FP loads are
scheduled late in the issue group so that if necessary, they can be issued to the M2 and M3
ports. This frees the M0 and M1 ports needed by lfetch instructions or more restrictive load
types.

• Avoid using nop.f. It risks unintended stalls due to outstanding long latency instructions. For
example, a write to FPSR is a multiple-cycle operation. Any floating-point operation,
including a nop.f, will stall until the write is completed.

• On the Itanium processor, MFI was a commonly used template to facilitate dual issue. There
are many other dual issue template pairs on the Itanium 2 processor so using this template
should no longer be necessary.

9.2 Optimal Use of lfetch

The lfetch instruction is key to achieving good performance on the Itanium 2 processor in many
memory-related situations. lfetch allows the L1D to often be a hit for integer data. This has the
benefit of allowing the L1D cache to filter requests to the L2. Many L2 conflicts can be avoided by
ensuring integer loads hit in the L1D and thus, never are seen by the L2. The fewer requests the L2
sees, the fewer requests conflict.

lfetch instructions require careful use. Carelessly placing lfetch instructions may lower
performance. Refer to Chapter 6, “Memory Subsystem” for details regarding the Itanium 2
processor cache structures. The following guidelines were developed with regard to the memory
subsystem:
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 9-1

Optimizing for the Itanium® 2 Processor
• The maximum number of outstanding lfetch operations to L3 or memory, the sum of both
data and instruction requests, may not exceed 16.

• lfetch instructions are restricted to only memory ports M0 and M1 while FP loads (not
ldfpd or ldfps) can be issued on any of the four memory ports. Therefore, when mixing
lfetch instructions with FP loads, lfetch instructions should be scheduled early in issue
groups. For example, if two FP loads and an lfetch are to be scheduled in the same cycle,
the lfetch should be scheduled in the first bundle so that it will be issued on one of the first
two memory ports. If the two FP loads are scheduled first, the hardware will insert an implicit
stop before issuing the lfetch instruction.

• The Itanium 2 lfetch.excl instruction will bring data into the L2 cache in the M state. The
.excl completer should only be used when the data brought in by the lfetch will shortly
be modified by store instructions.

• The Itanium 2 lfetch instructions will not bring the data into the cache if a DTLB entry
providing translation and protection information is not available. To ensure the lfetch
instruction completes a HPW walk and possibly generates a TLB translation or protection
fault, the .fault completer should be used. Since there may be high cost associated with
these events, the .fault completer should not be used for speculative addresses.

• lfetch instructions may have effects in the cache hierarchy that make their use high cost.
These effects include:

— Acquiring L2 resources such as the L2 OzQ.

— Arbitration for access to the L2 data arrays and thus becoming a candidate for an L2 bank
conflict.

— Recirculation of the lfetch in the case of a secondary L2 miss.

The effects of the L2 recirculate for a secondary L2 miss can be mitigated by placing .nt
completers on the lfetch. The .nt hints keep the lfetch from causing an L1D fill and allows
the lfetch to be removed from the L2 OzQ. However, the non-temporal completer is not
absolutely necessary because the L2 OzQ logic can recognize when any lfetch instruction is a
secondary L2 miss, and does not perform an L1D fill to prevent it from allocating in the L2 OzQ.

In the case where an lfetch hits the L2, it takes L2 OzQ resources, causes other request to
cancel, and may get canceled itself as if it actually reads the L2 data array regardless of the .nt
hint or actual need to fill the L1D.

9.3 Data Streaming

There are several methods to handle long, high-bandwidth data streams. This section lists several
possible solutions and discusses some of the benefits and costs of each.

9.3.1 Floating-Point Data Streams

Floating-point data resides in the L2 cache. Here, the lfetch.fault.nt1 instruction should be
issued only once per L2 cache line for the source, and the lfetch.fault.excl.nt1
instruction should be issued only once per L2 cache line for the destination. The .fault
completer is used to ensure that the data enters into the cache hierarchy, even if it results in an L2
DTLB miss or VHPT miss. The .nt1 completer ensures that the floating-point data will not
displace data residing in the L1D. The .nt1 completer also allows an lfetch instruction that is a
secondary L2 miss to avoid allocation in the L2 OzQ. This is important for situations where the
design of the data streaming code cannot avoid additional requests to an L2 line without
9-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Optimizing for the Itanium® 2 Processor
performance loss. The .excl completer for the destination stream will ensure the data is ready to
be modified.

When data is accessed as an L2 hit, care should be taken to avoid L2 bank conflicts among request
groups. This is necessary to ensure L2 5- and 7-cycle bypasses are available. Latency is not
generally a concern for floating-point code, however, in streaming situations, the lifetime of an
operation in the L2 OzQ coupled with the size of the OzQ may cause core stalls from the L2
control logic to think the OzQ is full. A lower latency means a shorter lifetime in the OzQ and
effectively more OzQ entries are available.

9.3.2 Integer Data Streams

Integer data streams are more complicated than floating-point streams because, in some instances,
getting the data into the L1D will be important for performance. Streaming from the L1D presents
several problems. First, each load operation hits in the L1D and requires integer register return
resources even when it misses the L1D. This makes it difficult for L1D misses to return data to the
register file without impacting the flow of new L1D misses. Second, each fill operation will take an
additional cycle to complete. Third, the need to fill the L1D eliminates an opportunity for the L2
OzQ to remove secondary L2 miss lfetch instructions. This is significant because the L1D line
size is half of the L2’s and one lfetch per L1D line will result in at least one secondary L2 miss
access for every L2 line thus limiting L2 OzQ throughput.

One approach would be to use three separate lfetch instructions. An lfetch.fault.nt1
would bring the data into the L2. Later, when the data is in the L2, lfetch.fault instructions
can hit in the L2 cache and bring the data into the L1D. This makes the lfetch instructions
asymmetric and requires several load memory slots.

An optimization to the three lfetch approach above would use only two separate
lfetch.fault instruction, but stage them such that the first will bring data into L2 and the
L1D. Then, when the L2 is filled from the first request, the second lfetch can bring the data into
the L1D without being a secondary L2 miss (the L2 is filled so the lfetch is an L2 hit). This frees
an additional load memory slot and makes the lfetch instructions re-usable.

An outstanding L1D fill may be invalidated by a store to the same line. Using lfetch instructions
for even small data streams can result in a significant performance increase provided the lfetch
fills the L1D before the store to the line is seen.

Also, since all loads that hit in the L1D never allocate into the L2 OzQ, using lfetch instructions
to ensure an L1D hit may also help performance by limiting L2 OzQ to only store data and
lfetch requests. This relieves pressure on the limited OzQ resources and reduces the possibility
of conflicts among OzQ entries.

9.3.3 Store Data Streams

Since store instructions are always seen by the L2, there is no benefit to bringing store destination
data into the L1D. There are many benefits to using an lfetch.fault.excl.nt1 completer
for destination streams. For instance, the .nt1 hint allows secondary L2 misses to be removed and
the core is not slowed by the L1D fills. Also, the .excl hint ensures that the L2 data is ready to
receive the store data.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 9-3

Optimizing for the Itanium® 2 Processor
9.4 Control and Data Speculation

The Itanium 2 processor reduces the costs associated with control and data speculation in the
ALAT via fast deferral and low latency fix up. As such, additional performance may be realized by
tuning the code generation to aggressively use speculation. Some speculation considerations are
specific to the Itanium processor and do not apply to the Itanium 2 processor. If speculation is more
aggressive, then more calls to fix up code will be encountered. For the Itanium processor, the fix up
code was often moved to cold pages very far from the actual speculation. The heuristic for placing
fix up code near or far from the point of speculation should be revisited and include profile
information in the decision matrix.

9.5 Known L2 Miss Bundle Placement

Given the Itanium 2 processor design, it is slightly better to put instructions which are known to
miss the L2 cache on memory port 0 (allocate the first memory op in the issue group). This will
allow, when possible, a speculative request to be made to L3. If the memory request that needs to
go to L2 is in M1, M2, or M3, then they will need to wait until they can be reissued out of the L2
OzQ.

9.6 Avoid Known L2 Cancel and Recirculate Conditions

The most predictable L2 cancel is an L2 bank conflict. These can be avoided by carefully
organizing L2 accesses or by bringing the data into the L1D with an lfetch instruction and
avoiding the L2 entirely.

The most predictable L2 recirculate is for secondary L2 miss accesses. These can be avoided by
using the lfetch instruction to bring data into the L2. Only lfetch instructions that do not fill
L1D are not counted as a secondary access. If an lfetch is the primary L2 miss and a load is the
secondary L2 miss, then the load will still need to recirculate, as it must eventually return data to
the core. It is important to schedule L2 miss lfetch instructions far in front of the load to avoid
this situation.

9.7 Instruction Bundling

The Itanium 2 processor can completely issue almost all bundle template combinations. Provided
the ILP is available, closing the correct bundling and instruction scheduling may benefit
performance. There are two concerns here. First, place more restrictive instructions early in the
issue group and, where possible, transform restrictive instructions. The simple instruction nop.i
must issue to an I port, however, an add can issue on either an M or I port. The nop.i should be
scheduled early to ensure it receives its needed I port. An alternative would be to replace the
nop.i with an instruction that is effectively a nop (such as add r3=r0, r3) which can issue
on either an I or M port.
9-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Optimizing for the Itanium® 2 Processor
9.8 Branches

The following branch and branch prediction related optimization suggestions are covered in detail
in Chapter 7, “Branch Instructions and Branch Prediction.” They are summarized here.

9.8.1 Single Cycle Branches

The Itanium 2 processor cannot support single cycle loop branches without some penalty in some
iterations of the loop. Unroll the loop to at least two cycles to get expected performance. This may
come at a small cost to code size.

9.8.2 Perfect Loop Prediction

Also, perfect loop prediction only predicts the final iteration of the loop. As such, the Itanium 2
processor considers the branch hints in predicting the branches. The Itanium 2 processor requires
ar.ec to be set correctly (i.e. if there is no epilogue, set ar.ec=0 not to 1 as the Itanium
processor expected).

9.8.3 Branch Targets

Branch targets should be aligned on 32-byte boundaries to ensure that the front-end can deliver two
bundles per cycle to the back-end.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 9-5

Optimizing for the Itanium® 2 Processor
9-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring 10

10.1 Introduction

This chapter defines the performance monitoring features of the Itanium 2 processor. The
Itanium 2 processor provides four 48-bit performance counters, 100+ monitorable events, and
several advanced monitoring capabilities. This chapter outlines the targeted performance monitor
usage models, defines the software interface and programming model, and lists the set of
monitored events.

The Itanium architecture incorporates architected mechanisms that allow software to actively and
directly manage performance critical processor resources such as branch prediction structures,
processor data and instruction caches, virtual memory translation structures, and more. To achieve
the highest performance levels, dynamic processor behavior can be monitored and fed back into the
code generation process to better encode observed run-time behavior or to expose higher levels of
instruction level parallelism. On the Itanium 2 processor, we expect to measure the behavior of
real-world Itanium architecture-based applications and operating systems as well as mixed IA-32
and Itanium architecture-based code. These measurements will be critical for understanding the
behavior of compiler optimizations, the use of architectural features such as speculation and
predication, or the effectiveness of microarchitectural structures such as the ALAT, the caches, and
the TLBs. These measurements will provide the data to drive application tuning and future
processor, compiler, and operating system designs.

The remainder of the document is split into the following sections:

• Section 10.2, “Performance Monitor Programming Models” discusses how performance
monitors are used, and presents various Itanium 2 processor performance monitoring
programming models.

• Section 10.3, “Performance Monitor State” defines the Itanium 2 processor specific
PMC/PMD performance monitoring registers.

• Chapter 11, “Performance Monitor Events” gives an overview of the Itanium 2 processor
event list.

10.2 Performance Monitor Programming Models

This section introduces the Itanium 2 processor performance monitoring features from a
programming model point of view and describes how the different event monitoring mechanisms
can be used effectively. The Itanium 2 processor performance monitor architecture focuses on the
following two usage models:

• Workload Characterization: The first step in any performance analysis is to understand the
performance characteristics of the workload under study. Section 10.2.1, “Workload
Characterization” discusses the Itanium 2 processor support for workload characterization.

• Profiling: Profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and relating them
back to their code. Their primary objective is to understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced Itanium architectural features such as predication
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-1

Performance Monitoring
and speculation benefit from run-time profile information to optimize instruction schedules.
The Itanium 2 processor supports instruction level statistical profiling of branch mispredicts
and cache misses. Details of the Itanium 2 processor’s profiling support are described in
Section 10.2.2, “Profiling.”

10.2.1 Workload Characterization

The first step in any performance analysis is to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

• Event Rate Monitoring: Event rates of interest include average retired instructions per clock,
data and instruction cache miss rates, or branch mispredict rates measured across the entire
application. Characterization of operating systems or large commercial workloads (e.g. OLTP
analysis) requires a system-level view of performance relevant events such as TLB miss rates,
VHPT walks/second, interrupts/second, or bus utilization rates. Section 10.2.1.1, “Event Rate
Monitoring” discusses event rate monitoring.

• Cycle Accounting: The cycle breakdown of a workload attributes a reason to every cycle
spent by a program. Apart from a program’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flushes. Section 10.2.1.4, “Cycle Accounting” discusses
cycle accounting.

10.2.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run, and then computing the desired rates. For instance, two basic
Itanium 2 processor events that count the number of retired Itanium instructions
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_CYCLES) allow a
workload’s instructions per cycle (IPC) to be computed as follows:

• IPC = (IA64_INST_RETIRED.ut1 - IA64_INST_RETIRED.ut0) / (CPU_CYCLESt1 -
CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune™, gprof,
WinNT]. As shown in Figure 10-1, time-based sampling can be used to plot the event rates over
time, and can provide insights into the different phases that the workload moves through.

On the Itanium processor, many event types, e.g. TLB misses or branch mispredicts are limited to a
rate of one per clock cycle. These are referred to as “single occurrence” events. However, in the
Itanium 2 processor, multiple events of the same type may occur in the same clock. We refer to
such events as “multi-occurrence” events. An example of a multi-occurrence events on the

Figure 10-1. Time-Based Sampling

Time
Sample Interval

t1t0

E
ve

nt
 R

at
e

10-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
Itanium 2 processor is data cache read misses (up to two per clock). Multi-occurrence events, such
as the number of entries in the memory request queue, can be used to the derive average number
and average latency of memory accesses. The next two sections describe the basic Itanium 2
processor mechanisms for monitoring single and multi-occurrence events.

10.2.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium 2 processor performance
counters. For all single occurrence events, a counter is incremented by up to one per clock cycle.
Duration counters that count the number of clock cycles during which a condition persists are
considered “single occurrence” events. Examples of single occurrence events on the Itanium 2
processor are TLB misses, branch mispredictions, and cycle-based metrics.

10.2.1.3 Multi-Occurrence Events, Thresholding, and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Itanium 2 processor are retired
instructions or the number of live entries in the memory request queue.

Thresholding capabilities are available in the Itanium 2 processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “For how many cycles did the memory
request queue contain more than two entries?” or “During how many cycles did the machine retire
more than three instructions?” to be answered. This capability allows microarchitectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding requests and the average number of cycles that requests were pending are
of interest. To calculate the average number or latency of multiple outstanding requests in the
memory queue, we need to know the total number of requests (ntotal) and the number of live
requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a
multi-occurrence counter, Σnlive is directly measured by hardware. We can now calculate the
average number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 10-1 in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

Table 10-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

nlive
1 2 3 3 3 2 1 0

Σnlive
1 3 6 9 12 14 15 15

ntotal
1 2 3 4 5 5 5 5
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-3

Performance Monitoring
The Itanium 2 processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter.

• Retired instruction counter.

• Event occurrence and duration counters.

• Multi-occurrence counters with thresholding capability.

10.2.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured IPC rate. If a low IPC occurs concurrently with a
peak of cache miss activity, chances are that cache misses are causing a performance problem. To
eliminate such guess work, the Itanium 2 processor provides a set of cycle accounting monitors,
that break down the number of cycles that are lost due to various kinds of microarchitectural
events. As shown in Figure 10-2, this lets us account for every cycle spent by a program and
therefore provides insight into an application’s microarchitectural behavior. Note that cycle
accounting is different from simple stall or flush duration counting. Cycle accounting is based on
the machine’s actual stall and flush conditions, and accounts for overlapped pipeline delays, while
simple stall or flush duration counters do not. Cycle accounting determines a program’s cycle
breakdown by stall and flush reasons, while simple duration counters are useful in determining
cumulative stall or flush latencies.

The Itanium 2 processor cycle accounting monitors account for all major single and multi-cycle
stall and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline
order, i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported
as being caused later in the pipeline. The six back-end stall and flush reasons are prioritized in the
following order:

1. Exception/Interruption Cycle: cycles spent flushing the pipe due to interrupts and exceptions.

2. Branch Mispredict Cycle: cycles spent flushing the pipe due to branch mispredicts.

3. Data/FPU Access Cycle: memory pipeline full, data TLB stalls, load-use stalls, and access to
floating-point unit.

4. Execution Latency Cycle: scoreboard and other register dependency stalls.

5. RSE Active Cycle: RSE spill/fill stall.

6. Front-end Stalls: stalls due to the back-end waiting on the front-end.

Additional front-end stall counters are available which detail seven possible reasons for a front-end
stall to occur. However, the back-end and front-end stall events should not be compared since they
are counted in different stages of the pipeline.

For details, refer to Section 11.6, “Stall Events.”

Figure 10-2. Itanium® Processor Family Cycle Accounting

001229

30% 25%

100% Execution Time

Inherent Program
Execution Latency

Data Access
Cycles

Branch
Mispredicts

I Fetch
Stalls

Other Stalls

20% 15% 10%
10-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
10.2.2 Profiling

Profiling is used by application developers, profile-guided compilers, optimizing linkers, and
run-time systems. Application developers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback developers can make changes to
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced Itanium architectural features such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Itanium 2 processor’s performance
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Itanium 2 processor event address registers (EARs) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, and instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

10.2.2.1 Program Counter Sampling

Application tuning tools like [VTune, gprof] use time-based or event-based sampling of the
program counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 10-3, the sampled points can be histogrammed by instruction
addresses. For application tuning, statistical sampling techniques have been very successful,
because the programmer can rapidly identify code hot spots in which the program spends a
significant fraction of its time, or where certain event counts are high.

Program counter sampling points the performance analysts at code hot spots, but does not indicate
what caused the performance problem. Inspection and manual analysis of the hot-spot region along
with a fair amount of guess work are required to identify the root cause of the performance
problem. On the Itanium 2 processor, the cycle accounting mechanism (described in
Section 10.2.1.4, “Cycle Accounting”) can be used to directly measure an application’s
microarchitectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used for
time-based program counter sampling. Event-based program counter sampling is supported by a
dedicated performance monitor overflow interrupt mechanism described in detail in Section 7.2.2
“Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])” in Volume 2 of the Intel®

Itanium® Architecture Software Developer’s Manual.

Figure 10-3. Event Histogram by Program Counter

Event
Frequency

Examples:
Cache

Address Space
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-5

Performance Monitoring
To support program counter sampling, the Itanium 2 processor provides the following mechanisms:

• Timer interrupt for time-based program counter sampling

• Event count overflow interrupt for event-based program counter sampling

• Hardware-supported cycle accounting

10.2.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
microarchitectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
microarchitectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. This type of analysis requires
identification of instruction and data addresses related to microarchitectural “miss events” such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruction completion of today’s
microarchitectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter
may be off by two dynamic instructions from the instruction that caused the miss event. On an
Pentium® Pro processor, this distance increases to approximately 32 dynamic instructions. On the
Itanium 2 processor, it is approximately 48 dynamic instructions. If program counter sampling is
used for miss event address identification on the Itanium 2 processor, a miss event might be
associated with an instruction almost five dynamic basic blocks away from where it actually
occurred (assuming that 10% of all instructions are branches). Therefore, it is essential for
hardware to precisely identify an event’s address.

The Itanium 2 processor provides a set of event address registers (EARs) that record the instruction
and data addresses of data cache misses for loads, the instruction and data addresses of data TLB
misses, and the instruction addresses of instruction TLB and cache misses. A four deep branch
trace buffer captures sequences of branch instructions. Table 10-2 summarizes the capabilities
offered by the Itanium 2 processor EARs and the branch trace buffer. Exposing miss event
addresses to software allows them to be monitored either by sampling or by code instrumentation.
This eliminates the need for trace generation to identify and solve performance problems and
enables performance analysis by a much larger audience on unmodified hardware.

Table 10-2. Itanium® 2 Processor EARs and Branch Trace Buffer

Event Address Register Triggers On What is Recorded

Instruction Cache Instruction fetches that miss
the L1 instruction cache
(demand fetches only)

Instruction Address
Number of cycles fetch was in flight

Instruction TLB (ITLB) Instruction fetch missed L1
ITLB (demand fetches only)

Instruction Address
Who serviced L1 ITLB miss: L2 ITLB VHPT
or software

Data Cache Load instructions that miss L1
data cache

Instruction Address
Data Address
Number of cycles load was in flight.
10-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
The Itanium 2 processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache misses or retired instructions. The performance
counter value is set up to interrupt the processor after a predetermined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows, an interrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval and by increasing
the number of observation intervals.

10.2.3 Event Qualification

On the Itanium 2 processor, performance monitoring can be confined to a subset of all events. As
shown in Figure 10-4 events can be qualified for monitoring based on an instruction address range,
a particular instruction opcode, a data address range, an event-specific “unit mask” (umask), the
privilege level and instruction set the event was caused by, and the status of the performance
monitoring freeze bit (PMC0.fr).

• Itanium Instruction Address Range Check: The Itanium 2 processor allows event monitoring
to be constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLLs), functions, or loops of interest in the context of a large
Itanium-based application. The Itanium instruction address range check is applied at the
instruction fetch stage of the pipeline and the resulting qualification is carried by the
instruction throughout the pipeline. This enables conditional event counting at a level of
granularity smaller than dynamic instruction length of the pipeline (approximately 48
instructions). The Itanium 2 processor’s instruction address range check operates only during
Itanium-based code execution, i.e. when PSR.is is zero. For details, see Itanium Opcode
Match and Address Range Check Registers (PMC8,9).

Data TLB
(DTLB)

Data references that miss
L1 DTLB

Instruction Address
Data Address
Who serviced L1 DTLB miss: L2 DTLB,
VHPT or software

Branch

Trace

Buffer

Branch Outcomes Branch Instruction Address

Branch Target Instruction Address

Mispredict status and reason

Table 10-2. Itanium® 2 Processor EARs and Branch Trace Buffer (Continued)

Event Address Register Triggers On What is Recorded
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-7

Performance Monitoring
• Itanium Instruction Opcode Match: The Itanium 2 processor provides two independent
Itanium opcode match registers each of which match the currently issued instruction
encodings with a programmable opcode match and mask function. The resulting match events
can be selected as an event type for counting by the performance counters. This allows
histogramming of instruction types, usage of destination and predicate registers as well as
basic block profiling (through insertion of tagged NOPs). The opcode matcher operates only
during Itanium-based code execution, i.e. when PSR.is is zero. Details are described in
Section 10.3.4.

• Itanium Data Address Range Check: The Itanium 2 processor allows event collection for
memory operations to be constrained to a programmable data address range. This enables
selective monitoring of data cache miss behavior of specific data structures. For details, see
Section 10.3.6.

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. As an example, the number of counted bus
transactions can be qualified by an event specific unit mask to contain transactions that
originated from any bus agent, from the processor itself, or from other I/O bus masters. In this
case, the bus unit uses a three-way unit mask (any, self, or I/O) that specifies which
transactions are to be counted. In the Itanium 2 processor, events from the branch, memory and
bus units support a variety of unit masks. For details, refer to the event pages in Chapter 11,
“Performance Monitor Events.”

Figure 10-4. Itanium® 2 Processor Event Qualification

000987a

Itanium® Instruction
Address Range CheckInstruction Address

Itanium Instruction
Opcode MatchInstruction Opcode

Is Itanium instruction pointer
in IBR range?

Does Itanium opcode match?

Itanium Data Address
Range Check

(Memory Operations Only)
Data Address Is Itanium data address

in DBR range?

Event Spefic "Unit Mask"Event Did event happen and qualify?

Privilege Level CheckCurrent Privilege
 Level

Executing at monitored
privilege level?

Instruction Set CheckCurrent Instruction
Set (Itanium or IA-32)

Executing in monitored
instruction set?

Event Count Freeze
Performance Monitor
Freeze Bit (PMC0.fr)

Is event monitoring enabled?

YES, all of the above are true;
this event is qualified.
10-8 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
• Privilege Level: Two bits in the processor status register are provided to enable selective
process-based event monitoring. The Itanium 2 processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to break
down event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level refer to Section 10.3.1, “Performance Monitor Control
and Accessibility.”

• Instruction Set: The Itanium 2 processor supports conditional event counting based on the
currently executing instruction set (Itanium or IA-32) by providing two instruction set mask
bits for each event monitor. This allows performance monitoring software to break down event
counts into Itanium and IA-32 contributions. For details, refer to Section 10.3.1, “Performance
Monitor Control and Accessibility.”.

• Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PMC0.fr). This ensures that the performance monitoring routines themselves, e.g.
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation. For details refer to Section 7.2.4 of
Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual.

10.2.3.1 Combining Opcode Matching, Instruction, and Data Address Range
Check

The Itanium 2 processor allows various event qualification mechanisms to be combined by
providing the instruction tagging mechanism shown in Figure 10-5.

During Itanium instruction execution (PSR.is is zero), the instruction address range check is
applied first. The resulting address range check tag (IBRRangeTag) is passed to two opcode
matchers that combine the instruction address range check with the opcode match. Each of the two
combined tags (Tag(PMC8) and Tag(PMC9)) can be counted as a retired instruction count event
(for details refer to event description “IA64_TAGGED_INST_RETIRED” on page 11-52).

Figure 10-5. Instruction Tagging Mechanism in the Itanium® 2 Processor

000988b

Itanium
Opcode
Matcher

(PMC9, PMC15)

Itanium®

Opcode
Matcher

(PMC8, PMC15)

Itanium
Instruction
Address
Range
Check
(IBRs,
PMC14)

Itanium Data
Address Range

Check
(DBRs, PMC13)

Memory
Eventi

Eventj

Eventk

Eventl

Tag(PMC[8])

IBRRange Tag

DBRRange Tag

Tag(PMC9)

Event Select (PMCi.es)

Privilege
Level &

Instruction Set
Check

Privilege Level Mask
Instruction Set Mask
(PMCi.plm, PMCi.ism)

Counter
(PMDi)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-9

Performance Monitoring
One of the combined Itanium address range and opcode match tags, Tag(PMC8), qualifies all
downstream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB
events can further be qualified using a data address DBRRangeTag).

As summarized in Table 10-3, data address range checking can be combined with opcode matching
and instruction range checking on the Itanium 2 processor. Additional event qualifications based
on the current privilege level and the current instruction set can be applied to all events and are
discussed in Section 10.2.3.2, “Privilege Level Constraints” and Section 10.2.3.3, “Instruction Set
Constraints.”

10.2.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the
operating system. In general, this has made performance analysis of a single process in a
multi-processing system or a multi-process workload impossible. To provide hardware support for
this kind of analysis, the Itanium architecture specifies three global bits (PSR.up, PSR.pp, DCR.pp)
and a per-monitor “privilege monitor” bit (PMCi.pm). To break down the performance
contributions of operating system and user-level application components, each monitor specifies a
4-bit privilege level mask (PMCi.plm). The mask is compared to the current privilege level in the
processor status register (PSR.cpl), and event counting is enabled if PMCi.plm[PSR.cpl] is one.
The Itanium 2 processor performance monitors control is discussed in Section 10.3.1,
“Performance Monitor Control and Accessibility.”.

PMC registers can be configured as user-level monitors (PMCi.pm is 0) or system-level monitors
(PMCi.pm is 1). A user-level monitor is enabled whenever PSR.up is one. PSR.up can be
controlled by an application using the sum/rum instructions. This allows applications to
enable/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is 0, events during
interruptions are not counted; if DCR.pp is 1, they are included in the kernel counts.

Table 10-3. Itanium® 2 Processor Event Qualification Modes

Event Qualification Modes

Opcode Match
Enable

PMC15.ibrp0-pm
c8

Opcode
Matching

PMC8

Instruction
Address

Range Check
Enable

PMC14.ibrp0

Data Address
Range Check

[PMC13.enable-dbrp#
PMC13.dbrp#]

(mem pipe events only)

Unconstrained Monitoring
(all events)

x 0xffff_ffff_ffff_ffff x [1,11] or [0,xx]

Instruction Address Range
Check Only

x 0xffff_ffff_ffff_fffe 0 [1,00]

Opcode Matching Only 1 Desired
Opcodes

x [1,01]

Data Address Range Check
Only

x 0xffff_ffff_ffff_ffff x [1,10]

Instruction Address Range
Check and Opcode
Matching

1 Desired
Opcodes

0 [1,01]

Instruction and Data
Address Range Check

x 0xffff_ffff_ffff_fffe 0 [1,00]

Opcode Matching and Data
Address Range Check

1 Desired
Opcodes

x [1,00]
10-10 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
As shown in Figure 10-6, Figure 10-7, and Figure 10-8, single process, multi-process, and
system-level performance monitoring are possible by specifying the appropriate combination of
PSR and DCR bits. These bits allow performance monitoring to be controlled entirely from a
kernel level device driver, without explicit operating system support. Once the desired monitoring
configuration has been setup in a process’ processor status register (PSR), “regular” unmodified
operating context switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process breakdown of event counts can be
generated as outlined in the performance monitoring chapter of the Intel® Itanium® Architecture
Software Developer’s Manual.

10.2.3.3 Instruction Set Constraints

On the Itanium 2 processor, monitoring can additionally be constrained based on the currently
executing instruction set as defined by PSR.is. This capability is supported by the four generic
performance counters, as well as the opcode matching and instruction and data event address
registers. However, the branch trace buffer only supports Itanium-based code execution. When
Itanium architecture only features are used, the corresponding PMC register instruction set mask
(PMCi.ism) should be set to Itanium architecture only (01) to ensure that events generated by
IA-32 code do not corrupt the Itanium 2 processor event counts.

Figure 10-6. Single Process Monitor

000989

Figure 10-7. Multiple Process Monitor

000990

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A PSR .up = 1, others 0A PSR .pp = 1, others 0A

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A/B PSR .pp = 1, others 0A/BPSR .up = 1, others 0A/B
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-11

Performance Monitoring
10.2.4 References

• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmarks:
A Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin -
Madison, July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

• [WinNT] Russ Blake, “Optimizing Windows NT(tm)”, Volume 4 of the Microsoft “Windows
NT Resource Kit for Windows NT Version 3.51”, Microsoft Press, 1995.

10.3 Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC)
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide
data values from the monitors. This section describes the Itanium 2 processor performance
monitoring registers which expands on the Itanium architectural definition. As shown in
Figure 10-9 the Itanium 2 processor provides four 48-bit performance counters (PMC/PMD4,5,6,7
pairs), and the following model-specific monitoring registers: instruction and data event address
registers (EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match
registers, and an instruction address range check register.

Table 10-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMC0,1,2,3. The four generic performance counter pairs are assigned
to PMC/PMD4,5,6,7. The event address registers and the branch trace buffer are controlled by three
configuration registers (PMC10,11,12). Captured event addresses and cache miss latencies are
accessible to software through five event address data registers (PMD0,1,2,3,17) and a branch trace
buffer (PMD8-16). On the Itanium 2 processor, monitoring of some events can additionally be
constrained to a programmable instruction address range by appropriate setting of the instruction
breakpoint registers (IBR) and the instruction address range check register (PMC13) and turning on
the checking mechanism in the opcode match register (PMC8,9) Two opcode match registers

Figure 10-8. System Wide Monitor

000991

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

All PSR.up = 1 All PSR.pp = 1All PSR.up = 1
10-12 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
(PMC8,9) and an opcode match configuration register (PMC15) allow monitoring of some events to
be qualified with a programmable opcode. For memory operations, events can be qualified by a
programmable data address range by appropriate setting of the data breakpoint registers (DBRs)
and the data address range configuration register (PMC14).

Table 10-4. Itanium® 2 Processor Performance Monitor Register Set

Monitoring
Feature

Configuration
Registers

(PMC)

Data
Registers

(PMD)
Description

Interrupt Status PMC0,1,2,3 none See Section 10.3.3, “Performance Monitor Overflow
Status Registers (PMC0,1,2,3)”

Event Counters PMC4,5,6,7 PMD4,5,6,7 See Section 10.3.2, “Performance Counter Registers”

Opcode
Matching

PMC8,9,15 none See Section 10.3.4, “Opcode Match Check (PMC8,9,15)”

Instruction EAR PMC10 PMD0,1 See Section 10.3.7.1, “Instruction EAR (PMC10,
PMD0,1)”

Data EAR PMC11 PMD2,3,17 See Section 10.3.8, “Data EAR (PMC11, PMD2,3,17)”

Branch Trace
Buffer

PMC12 PMD8-16 See Section 10.3.9.2, “Branch Trace Buffer Reading”

Instruction
Address Range
Check

PMC14 none See Section 10.3.5, “Instruction Address Range
Matching”

Memory Pipeline
Event
Constraints

PMC13 none See Section 10.3.6, “Data Address Range Matching
(PMC13)”
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-13

Performance Monitoring
Figure 10-9. Itanium® 2 Processor Performance Monitor Register Mode

000992b

pmc0

pmc1

pmc2

pmc3

Performance Counter
Overflow Status Registers

63 0

pmc4

pmc5

pmc6

pmc7

Performance Counter
Configuration Registers

63 0
pmc4

pmc5

pmc6

pmc7

Performance Counter
Data Registers

63 0

pmc8

pmc9

Itanium Opcode/Address
Range Match Registers

63 0

pmc10

pmc11

63 0

pmc12

Branch Trace Buffer

63 0

pmc15

Opcode Match
63 0

instr.
data

pmc0

pmc1

pmc2

pmc3

Instruction/Data Event
Address Data Registers

63 0

pmc17

instr.

data

pmc8

pmc9

Branch Trace
Buffer Registers

63 0

pmc15

pmc16

cr73

Performance Monitor
Vector Register

63 0

cr0

Default Control Register

63 0
DCR

PMV

Configuration Registers:
Instruction/Data Event Address

Processor Status Register

63 0
PSR

Itanium® Architecture
Generic Register Set

Itanium® 2 Processor
Implementation-
Specific Register Set

pmc13

Instruction/Data Address
Range Check

63 0
instr.
data
10-14 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
10.3.1 Performance Monitor Control and Accessibility

In order to use performance monitor features, the power to the PMU should be turned on by setting
PMC4.enable to 1. At reset, this bit will be set. To provide power savings, this bit can be cleared to
turn off the clocks to all PMDs, PMCs (with the exception of PMC4), and other non-critical
circuitry.

Once the power is turned on, event collection is controlled by the Performance Monitor
Configuration (PMC) registers and the processor status register (PSR). Four PSR fields (PSR.up,
PSR.pp, PSR.cpl and PSR.sp) and the performance monitor freeze bit (PMC0.fr) affect the
behavior of all performance monitor registers.

Per-monitor control is provided by three PMC register fields (PMCi.plm, PMCi.ism, and
PMCi.pm). Instruction set masking based on PMCi.ism is a Itanium 2 processor model-specific
feature. Event collection for a monitor is enabled under the following constraints on the Itanium 2
processor:

Monitor Enablei =(not PMC0.fr) and PMCi.plm[PSR.cpl] and ((not PMCi.ism[PSR.is]) or
(PMCi=12)) and ((not (PMCi.pm) and PSR.up) or (PMCi.pm and PSR.pp))

Figure 10-10 defines the PSR control fields that affect performance monitoring. For a detailed
definition of how the PSR bits affect event monitoring and control accessibility of PMD registers,
please refer to Section 3.3.2 and Section 7.2.1 of Volume 2 of the Intel® Itanium® Architecture
Software Developer’s Manual.

Table 10-5 defines per monitor controls that apply to PMC4,5,6,7,10,11,12. As defined in Table 10-4,
“Itanium® 2 Processor Performance Monitor Register Set,” each of these PMC registers controls
the behavior of its associated performance monitor data registers (PMD). The Itanium 2 processor
model-specific PMD registers associated with instruction/data EARs and the branch trace buffer
(PMD0,1,2,3,8-17) can be read only when event monitoring is frozen (PMC0.fr is one).

Figure 10-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other upoth rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Table 10-5. Performance Monitor PMC Register Control Fields (PMC4,5,6,7, 0,11,12)

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Itanium 2 processor will not preserve the value of the corresponding PMD register(s).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-15

Performance Monitoring
10.3.2 Performance Counter Registers

The Itanium 2 processor provides four generic performance counters (PMC/PMD4,5,6,7 pairs). The
implemented counter width on the Itanium 2 processor is 48 bits ([47] indicates overflow
condition). More than the Itanium processor, PMC/PMD pairs on the Itanium 2 processor are
symmetrical, i.e. nearly all event types can be monitored by all counters. There are exceptions
within some of the cache counters. See Section 11.8.2, “L1 Data Cache Events” and Section 11.8.3,
“L2 Unified Cache Events” for more information. These counters can track events whose
maximum per-cycle event increment is up to seven.

Figure 10-11 and Table 10-6 define the layout of the Itanium 2 processor Performance Counter
Configuration Registers (PMC4,5,6,7). The main task of these configuration registers is to select the
events to be monitored by the respective performance monitor data counters. Event selection (es)
and unit mask (umask) fields in the PMC registers perform the selection of these events. The rest
of the fields in PMCs specify under what conditions the counting should be done (plm, pm, ism),
by how much the counter should be incremented (threshold), and what need to be done if the
counter overflows (ev, oi).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.
Any read of the PMD by non-privileged software in this case will return 0.

NOTE: In PMC10 this field is implemented in bit [4].

ism 25:24 Instruction Set Mask - controls performance monitor operation based on the current
instruction set. The instruction set mask applies to PMC4,5,6,7,10,11 but not to PMC12.

00: monitoring enabled during Itanium and IA-32 instruction execution (regardless of PSR.is)
10: bit 24 low enables monitoring during Itanium instruction execution (when PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring

NOTE: In PMC10 this is implemented in [15:14]. PMC12 does not have this field.

Table 10-5. Performance Monitor PMC Register Control Fields (PMC4,5,6,7, 0,11,12)
 (Continued)

Field Bits Description

Figure 10-11. Itanium® 2 Processor Generic PMC Registers (PMC4,5,6,7)
63 28 27 26 25 24 23 22 20 19 16 15 8 7 6 5 4 3 0

PMC4,5,6,7 reserved --- ism ena
ble

thres-
hold

umask es ig pm oi ev plm

36 2 2 1 3 4 8 1 1 1 1 4

Table 10-6. Itanium® 2 Processor Generic PMC Register Fields (PMC4,5,6,7)

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 10-5 “Performance Monitor PMC Register Control
Fields (PMC4,5,6,7, 0,11,12).”

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided
whenever the counter overflows. External notification occurs regardless of the setting of
the oi bit (see below). On the Itanium 2 processor, PMC4 external notification strobes
the BPM0 pin, PMC5 strobes the BPM1 pin, PMC6 strobes the BPM2 pin, and PMC7
strobes the BPM3 pin.
10-16 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
Figure 10-12 and Table 10-7 defines the layout of the Itanium 2 processor Performance Counter
Data Registers (PMD4,5,6,7). A counter overflow occurs when the counter wraps (i.e. a carry out
from bit 46 is detected). Software can force an external interruption or external notification after N
events by preloading the monitor with a count value of 247 - N. Note that bit 47 is the overflow bit
and must be initialized to 0 whenever there is a need to initialize the register.

When accessible, software can continuously read the performance counter registers PMD4,5,6,7
without disabling event collection. Any read of the PMD from software without the appropriate
privilege level will return 0 (See “plm” in Table 10-6). The processor ensures that software will see
monotonically increasing counter values.

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC0.fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMC0.fr) remains
unchanged. Counter overflows generate only one interrupt. Setting the corresponding
PMC0 bit on an overflow will be independent of this bit.

pm 6 Privilege Monitor. See Table 10-5 “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7, 0,11,12).”

ig 7 reserved

es 15:8 Event select - selects the performance event to be monitored.
Itanium 2 processor event encodings are defined in Chapter 11, “Performance Monitor
Events.”

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)

threshold 22:20 Threshold -enables thresholding for “multi-occurrence” events.

When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.

enable 23 PMC4 Only. Enables use of the PMUs. A 1 must be written for the PMUs to function.
Power up value is 1.

ism 25:24 Instruction Set Mask. See Table 10-5 “Performance Monitor PMC Register Control
Fields (PMC4,5,6,7, 0,11,12).”

--- 27:26 Must write 0 for proper PMU operation.

ignored 63:28 Read zero, Writes ignored.

Table 10-6. Itanium® 2 Processor Generic PMC Register Fields (PMC4,5,6,7) (Continued)

Field Bits Description

Figure 10-12. Itanium® 2 Processor Generic PMD Registers (PMD4,5,6,7)
63 48 47 46 0

PMD4,5,6,7 sxt47 ov Count
16 1 47

Table 10-7. Itanium® 2 Processor Generic PMD Register Fields

Field Bits Description

sxt47 63:48 Writes are ignored, Reads return the value of bit 47, so count values appear as sign
extended.

ov 47 Overflow bit (carry out from bit 46).

NOTE: Writes to initialize the PMD should write 0 to this bit.

count 46:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit 46).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-17

Performance Monitoring
10.3.3 Performance Monitor Overflow Status Registers (PMC0,1,2,3)

As previously mentioned, the Itanium 2 processor supports four performance monitoring counters.
The overflow status of these four counters is indicated in register PMC0. As shown in Figure 10-13
and Table 10-8 only PMC0[7:4,0] bits are populated. All other overflow bits are ignored, i.e. they
read as zero and ignore writes.

10.3.4 Opcode Match Check (PMC8,9,15)

The Itanium 2 processor allows event monitoring to be constrained based on the instruction address
and/or Itanium encoding (opcode) of an instruction. Registers PMC15 and PMC14 (Section 10.3.5,
“Instruction Address Range Matching”) are used to enable these features. Registers PMC8,9 allow
configuring these features. For memory related events, the appropriate bits must be set in PMC13 to
enable this feature. Please refer to Section 10.3.6, “Data Address Range Matching (PMC13)” for
details. Unlike in the Itanium processor, the opcode matcher in the Itanium 2 processor operates
during both Itanium-based and IA-32 code execution. When operating in IA-32 mode it checks for
Itanium opcodes.

Figure 10-14 and Table 10-9 describe the fields of PMC8,9 registers. Figure 10-15 and Table 10-10
describes the register PMC15. All combinations of bits [63:60] are supported. To match A-slot
instruction, set bits [63:62] to 11. To match all instruction types, bits [63:60] should be set to 1111.
To ensure that all events are counted independent of the opcode matcher, all mifb and all mask bits
of PMC8,9 should be set to one (all opcodes match).

Figure 10-13. Itanium® 2 Processor Performance Monitor Overflow Status Registers
(PMC0,1,2,3)

63 8 7 6 5 4 3 2 1 0

reserved (PMC0) overflow rsv. fr
4 3 1

reserved (PMC1)

reserved (PMC2)

reserved (PMC3)

Table 10-8. Itanium® 2 Processor Performance Monitor Overflow Register Fields (PMC0,1,2,3)

Register Field Bits Description

PMC0 fr 0 Performance Monitor “freeze” bit - When 1, event monitoring is disabled.
When 0, event monitoring is enabled. This bit is set by hardware
whenever a performance monitor overflow occurs and its corresponding
overflow interrupt bit (PMC.oi) is set to one. SW is responsible for clearing
it. When the PMC.oi bit is not set, then counter overflows do not set this
bit.

PMC0 ignored 3:1 Read zero, Writes ignored.

PMC0 overflow 7:4 Event Counter Overflow - When bit n is one, indicate that the PMDn
overflowed. This is a bit vector indicating which performance monitor
overflowed. These overflow bits are set on their corresponding counters
overflow regardless of the state of the PMC.oi bit. Software may also set
these bits. These bits are sticky and multiple bits may be set.

PMC0 ignored 63:8 Read zero, Writes ignored.

PMC1,2,3 ignored 63:0 Read zero, Writes ignored.
10-18 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
PMC9 only qualifies the event IA64_TAGGED_INST_RETIRED. The Itanium 2 processor’s
opcode constraint for IA64_TAGGED_INST_RETIRED event ANDs PMC9 results with IBRP1
and IBRP3 matches and PMC8 results with IBR0 and IBRP2 matches. PMC8, however, constrains
other downstream events as well. To ensure that all events are counted independent of the opcode
matcher, bit[63:60] and bit [29:3] should be set to all ones.

Figure 10-14. Opcode Match Registers (PMC8,9)
63 62 61 60 59 33 32 30 29 3 2 1 0

m i f b match rsv mask -- inv ig_
ad

1 1 1 1 27 3 27 1 1 1

Table 10-9. Opcode Match Register Fields (PMC8,9)

Field Bits Width Description

ig_ad 0 1 Ignore Instruction Address Range Checking. If set to 1, all instruction
addresses are considered for events. If 0, IBRs 0-1 will be used for
address constraints.

NOTE: This bit is ignored in PMC9.

inv 1 1 Invert Range Check. If set to 1, the address ranged specified by IBR0-1 is
inverted. Effective only when ig_ad bit is set to 0.

NOTE: This bit is ignored in PMC9.

--- 2 1 Must write 1 for proper PMU operation.

mask 29:3 27 Bits that mask Itanium® instruction encoding bits

[15:3] mask bits for opcode bits[12:0]

[29:16] mask bits for opcode bits[40:27]

If mask bit is set to 1, the corresponding opcode bit is not used for opcode
matching

rsv 32:30 3 Reserved bits

match 59:33 27 Opcode bits against which Itanium instruction encoding to be matched

[45:33]: match bits for opcode bits[12:0]

[59:46]: match bits for opcode bits[40:27]

b 60 1 If 1: match if opcode is an B-slot

f 61 1 If 1: match if opcode is an F-slot

i 62 1 If 1: match if opcode is an I-slot

m 63 1 If 1: match if opcode is an M-slot

Figure 10-15. Opcode Match Configuration Register (PMC15)
63 4 3 2 1 0

reserved ibrp3
pmc

9

ibrp2
pmc

8

ibrp1
pmc9

ibrp0
pmc8

1 1 1 1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-19

Performance Monitoring
For opcode matching purposes, an Itanium instruction is defined by two items: the instruction type
“itype” (one of M, I, F or B) and the 42-bit encoding “enco{41:0}” defined the Intel® Itanium®
Architecture Software Developer’s Manual. Each instruction is evaluated against each opcode
match register (PMC8,9) as follows:

Match(PMCi) = (imatch(itype, PMCi.mifb) AND ematch(enco,PMCi.match,PMCi.mask))

Where:
imatch(itype,PMC[i].mifb) = (itype=M AND PMC[i].m) OR (itype=I AND PMC[i].i) OR
(itype=F AND PMC[i].f) OR (itype=B AND PMC[i].b)

ematch(enco,match,mask) = AND b=40..27 ((enco{b}=match{b-14}) OR mask{b-14}) AND
b=12..0 ((enco{b}=match{b}) OR mask{b})

This function matches encoding bits{40:27} (major opcode) and encoding bits{12:0} (destination
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode
matcher.

The IBRP matches are advanced with the instruction pointer to the point where opcodes are being
dispersed. The matches from opcode matchers are ANDed with the IBRP matches at this point.

This produces two opcode match events that are combined with the instruction range check tag
(IBRRangeTag, see Section 10.3.5, “Instruction Address Range Matching”) as follows:
Tag(PMC8) = Match(PMC8) and IBRRangeTag

Tag(PMC9) = Match(PMC9) and IBRRangeTag

As shown in Figure 10-5 the two tags, Tag(PMC8) and Tag(PMC9), are staged down the processor
pipeline until instruction retirement and can be selected as a retired instruction count event (see
event description “IA64_TAGGED_INST_RETIRED” on page 11-52). In this way, a performance
counter (PMC/PMD4,5,6,7) can be used to count the number of retired instructions within the
programmed range that match the specified opcodes.

The opcodes dispersed to different pipelines are compared to PMC8; the opcode match is further
qualified by a number of user configurable bits (please refer to definition of PMC15 in this
document) and ANDed with IBRP0 match before being distributed to different places.

Note: Register PMC15 must contain the predetermined value of 0xfffffff0. If software modifies any bits
not listed in Table 10-10 processor behavior is not defined.

Table 10-10. Opcode Match Configuration Register Fields (PMC15)

Field Bits Description

ibrp0-pmc8 0 1: PMU events will not be constrained by opcode

0: PMU events (including IA64_TAGGED_INST_RETIRED.00) will be
opcode constrained by PMC8

ibrp1-pmc9 1 1: IA64_TAGGED_INST_RETIRED.01 won’t be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.01 will be opcode constrained by
PMC9

ibrp2-pmc8 2 1: IA64_TAGGED_INST_RETIRED.10 won’t be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.10 will be opcode constrained by
PMC8

ibrp3-pmc9 3 1: IA64_TAGGED_INST_RETIRED.11 won’t be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.11 will be opcode constrained by
PMC9
10-20 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
10.3.5 Instruction Address Range Matching

The Itanium 2 processor allows event monitoring to be constrained to a range of instruction
addresses. The four architectural Instruction Breakpoint Register Pairs IBRP0-3 (IBR0-17) can be
used to specify the desired address range. Once programmed this restriction would be applied to all
events. In the Itanium 2 processor, registers PMC8,14 specify how the resulting address match is
applied to the performance monitors. With the exception of IA64_INST_RETIRED and prefetch
events, IBRP0 is the only IBR pair used and will be considered the default for this section. For
memory related events, the appropriate bits must be set in PMC13 to enable this feature. Please
refer to Section 10.3.6, “Data Address Range Matching (PMC13)” for details.

Figure 10-16 and Table 10-12 describe the fields of register PMC14. Instruction address range
checking is controlled by the “ignore address range check” bit (PMC8.ig_ad and PMC14.ibrp0).
When PMC8.ig_ad is one (or PMC14.ibrp0 is one), all instructions are tagged regardless of IBR
settings. In this mode, events from both IA-32 and Itanium-based code execution contribute to the
event count. When both PMC8.ig_ad and PMC14.ibrp0 are zero, the instruction address range
check based on the IBR settings is applied to all Itanium code fetches. In this mode, IA-32
instructions are never tagged, and, as a result, events generated by IA-32 code execution are
ignored. Table 10-11 defines the behavior of the instruction address range checker for different
combinations of PSR.is and PMC8.ig_ad or PMC14.ibrp0.

The processor compares every Itanium instruction fetch address IP{63:0} against the address range
programmed into the architectural instruction breakpoint register pair IBRP0. Regardless of the
value of the instruction breakpoint fault enable (IBR x-bit), the following expression is evaluated
for the Itanium 2 processor’s IBRP0:

IBRmatch = match(IP,IBR0.addr, IBR1.mask, IBR1.plm)

The events which occur before the instruction dispersal stage will fire only if this qualified match
(IBRmatch) is true. This qualified match will be ANDed with the result of Opcode Matcher PMC8
and further qualified with more user definable bits (see Table 10-12) before being distributed to
different places. The events which occur after instruction dispersal stage, will use this new
qualified match (ibrp0-pmc8 match).

Table 10-11. Itanium® 2 Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC8.ig_ad OR
PMC14.ibrp0 0 (Itanium®) 1 (IA-32)

0 Tag only Itanium instructions if they match
IBR range.

DO NOT tag any IA-32 operations.

1 Tag all Itanium and IA-32 instructions. Ignore IBR range.

Figure 10-16. Instruction Address Range Configuration Register (PMC14)
63 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved fine reser
ved

ibrp3reser
ved

ibrp2reser
ved

ibrp1reser
ved

ibrp0 reser
ved

50 1 2 1 2 1 2 1 2 1 1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-21

Performance Monitoring
IBRP0 match is generated in the following fashion. Note that unless fine mode is used, arbitrary
range checking cannot be performed since the mask bits are in powers of 2. In fine mode, two IBR
pairs are used to specify the upper and lower limits of a range within a page (the upper bits of lower
and upper limits must be exactly the same).

If PMC14.Fine=0, IBRmatch0 = match[IP(63:0), IBR0(63:0), IBR1(55:0)]

Else, IBRmatch0 = match[IP(63:12), IBR0(63:12), IBR1(55:12)] and [IP(11:0) >
IBR0(11:0)] and [IP(11:0) < IBR4(11:0)]

 IBRadrmatch0 = IBRmatch0

 ibrp0 match = (PMC8.ign or PMC14.ibrp0) or (IBRadmatch0 and match[PSR.cpl,
IBR1(59:56)])

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if
PMC8.ig_ad, PMC14.ibrp0 and PSR.is are all zero and if none of the IBR x-bits or PSR.db are
set.

In order to allow simultaneous use of some IBRs for Performance Monitoring and the others for
debugging (the architected purpose of these registers), separate mechanisms are provided for
enabling IBRs and the x-bit should be cleared to 0 for the IBRP which is going to be used for PMU.

10.3.5.1 Use of IBRP0 For Instruction Address Range Check – Exception 1

The address range constraint for prefetch events is on the target address of these events rather than
the address of the prefetch instruction. Therefore IBRP1 must be used for constraining these events.

Table 10-12. Instruction Address Range Configuration Register Fields (PMC14)

Field Bits Description

ibrp0 1 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.00
included) will be constrained by IBRP0

ibrp1 4 1: No constraint

0: Prefetch PMU events (IA64_TAGGED_INST_RETIRED.01
included) will be constrained by IBRP1

ibrp2 7 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.10
included) ill be constrained by IBRP2

ibrp3 10 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.11
included) will be constrained by IBRP3

fine 13 Enable arbitrary range checking (non power of 2)

1: IBRP0,2 and IBRP1,3 are paired as lo/hi limit bits

0: Normal mode

This bit provides this capability. If set to 1, ibrp0 (lower limit) and ibrp2
(upper limit) are paired together; So are ibrp1 (lower limit) and
ibrp3(upper limit). Bits [63:12] of upper and lower limits need to be
exactly the same but could have any value. Bits[11:0] of upper limit
needs to be greater than bits[11:0] of lower limit. If an address falls in
between the upper and lower limits then a match will be signaled for
both of the ibr pairs used (ibrp0 and ibrp2 will signals matches at the
same time).

NOTE: The mask bits programmed in IBRs 1,3,5,7 for bits [11:0] have
no effect in this mode.
10-22 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
Calculation of IBRP1 match is the same as that of IBRP0 match with the exception that we use
IBR2,3,6 instead of IBR0,1,4.

Note: Register PMC14 must contain the predetermined value 0xdb6. If software modifies any bits not
listed in Table 10-12 processor behavior is not defined. It is illegal to have PMC13[48:45]=0000
and PMC8[0]=0 and ((PMC14[2:1]=10 or 00) or (PMC14[5:4]=10 or 00)); this produces
inconsistencies in tagging I-side events in L1D and L2.

10.3.5.2 Use of IBRP0 For Instruction Address Range Check – Exception 2

The Address Range Constraint for IA64_TAGGED_INST_RETIRED event uses all four IBR
pairs. Calculation of IBRP2 match is the same as that of IBRP0 match with the exception that
IBR4,5 (in non-fine mode) are used instead of IBR0. Calculation of IBRP3 match is the same as that
of IBRP1 match with the exception that we use IBR6,7 (in non-fine mode) instead of IBR2,3.

10.3.6 Data Address Range Matching (PMC13)

For instructions that reference memory, the Itanium 2 processor allows event counting to be
constrained by data address ranges. The 4 architectural Data Breakpoint Registers (DBRs) can be
used to specify the desired address range. Data address range checking capability is controlled by
the Memory Pipeline Event Constraints Register (PMC13).

Figure 10-17 and Table 10-11 describe the fields of register PMC13. When enabled ([1,x0] in the
bits corresponding to one of the 4 DBRs to be used), data address range checking is applied to
loads, stores, semaphore operations, and the lfetch instruction.

Table 10-13. Memory Pipeline Event Constraints Fields (PMC13)

Field Bits Description

cfg dbrp0 4:3 These bits determine whether and how DBRP0 should be used for
constraining memory pipeline events (where applicable).

00: IBR/Opc/DBR - Use IBRP0/PMC8 and DBRP0 for constraints (i.e.
they will be counted only if their Instruction Address, opcodes and
Data Address matches the IBRP0 programmed into these registers).

01: IBR/Opc - Use IBRP0/PMC8 for constraints

10: DBR - Only use DBRP0 for constraints

11: No constraints

NOTE: When used in conjunction with “fine” mode (see PMC14
description), only the lower bound DBR Pair (DBRP0 or DBRP1)
config needs to be set. The upper bound DBR Pair config should be
left to no constraint. So if IBRP0,2 are chosen for “fine” mode,
cfg_dbrp0 needs to be set according to the desired constraints but
cfg_dbrp2 should be left as 11 (No constraints).

cfg dbrp1 12:11 These bits determine whether and how DBRP1 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0.

cfg dbrp2 20:19 These bits determine whether and how DBRP2 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0.

cfg dbrp3 48,
28:27

These bits determine whether and how DBRP3 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0.

Enable dbrp0 45 0 - No constraints

1 - Constraints as set by cfg dbrp0.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-23

Performance Monitoring
DBRPx match is generated in the following fashion. Arbitrary range checking is not possible since
the mask bits are in powers of 2. Although it is possible to enable more than one DBRP at a time
for checking, it is not recommended. The resulting four matches are combined with PSR.db to form
a single DBR match:

DBRRangeMatch = ((DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or
DBRRangeMatch3) and (not PSR.db))

Events which occur after a memory instruction gets to the EXE stage will fire only if this qualified
match (DBRPx match) is true. The data address is compared to DBRPx; the address match is
further qualified by a number of user configurable bits in PMC13 before being distributed to
different places. DBR matching for performance monitoring ignores the setting of the DBR r,w,
and plm fields.

In order to allow simultaneous use of some DBRs for Performance Monitoring and the others for
debugging (the architected purpose of these registers), separate mechanisms are provided for
enabling DBRs and the r/w-bit should be cleared to 0 for the DBRP which is going to be used for
the PMU.

Note: Register PMC13 must contain the predetermined value 0x2078fefefefe. If software modifies any
bits not listed in Table 10-11 processor behavior is not defined. It is illegal to have
PMC13[48:45]=0000 and PMC8[0]=0 and ((PMC14[2:1]=10 or 00) or (PMC14[5:4]=10 or 00));
this produces inconsistencies in tagging I-side events in L1D and L3.

10.3.7 Event Address Registers (PMC10,11/PMD0,1,2,3,17)

This section defines the register layout for the Itanium 2 processor instruction and data event
address registers (EARs). Sampling of six events is supported on the Itanium 2 processor:
instruction cache and instruction TLB misses, data cache load misses and data TLB misses, ALAT
misses, and front-end stalls. The EARs are configured through two PMC registers (PMC10,11).
EAR specific unit masks allow software to specify event collection parameters to hardware.
Instruction and data addresses, operation latencies and other captured event parameters are
provided in five PMD registers (PMD0,1,2,3,17). The instruction and data cache EARs report the
latency of captured cache events and allow latency thresholding to qualify event capture. Event
address data registers (PMD0,1,2,3,17) contain valid data only when event collection is frozen
(PMC0.fr is one). Reads of PMD0,1,2,3,17 while event collection is enabled return undefined values.

Enable dbrp1 46 0 - No constraints

1 - Constraints as set by cfg dbrp1

Enable dbrp2 47 0 - No constraints

1 - Constraints as set by cfg dbrp2

Enable dbrp3 48 0 - No constraints

1 - Constraints as set by cfg dbrp3

Figure 10-17. Memory Pipeline Event Constraints Configuration Register (PMC13)
63 49 48 47 46 45 44 29 28 27 26 21 20 19 18 13 12 11 10 5 4 3 2 0

reser
ved

enable
dbrp

3 2 1 0

reserved cfg
dbrp

3

reser
ved

cfg
dbrp2

reser
ved

cfg
dbrp

1

reser
ved

cfg
dbrp0

reser
ved

15 1 1 1 1 16 2 6 2 6 2 6 2 3

Table 10-13. Memory Pipeline Event Constraints Fields (PMC13) (Continued)

Field Bits Description
10-24 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
10.3.7.1 Instruction EAR (PMC10, PMD0,1)

The instruction event address configuration register (PMC10) can be programmed to monitor either
L1 instruction cache or instruction TLB miss events. Figure 10-18 and Table 10-14 detail the
register layout of PMC10. Table describes the associated event address data registers PMD0,1.

I

When the cache_tlb-bit (PMC10.ct) is set to zero, instruction cache misses are monitored. When it
is set to one, instruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD0,1 depends on the setting of this bit and is described in
Section 10.3.7.2, “Instruction EAR Cache Mode (PMC10.ct=’1x)” for instruction cache
monitoring and in Section 10.3.7.3, “Instruction EAR TLB Mode (PMC10.ct=00)” for instruction
TLB monitoring.

Figure 10-18. Instruction Event Address Configuration Register (PMC10)
63 16 15 14 13 12 11 5 4 3 0

reserved ism ct umask pm plm
2 2 7 1 4

Table 10-14. Instruction Event Address Configuration Register Fields (PMC10)

Field Bits Description

plm 3:0 See Table 10-5, “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12)”

pm 4 See Table 10-5, “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12)”

umask 11:5

12:5

Selects the event to be monitored

If [13] = ‘1 then [12:5] are used for umask

ct 13:12 cache_tlb bit. Instruction EAR selector. Select instruction cache or TLB stalls

if =1x: Monitor demand instruction cache misses

NOTE: ISB hits are not considered misses.

PMD0,1 register interpretation (see Table 10-16, “Instruction EAR
(PMD0,1) in Cache Mode (PMC10.ct=’1x)”)

if =01: Nothing monitored

if =00: Monitor L1 instruction TLB misses

PMD0,1 register interpretation (see Table 10-16, “Instruction EAR
(PMD0,1) in Cache Mode (PMC10.ct=’1x)”)

ism 15:14 See Table 10-5, “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12)”

ignored 31:16

47:32

Will each return value of bits[15:0] when read

Figure 10-19. Instruction Event Address Register Format (PMD0,1)
63 5 4 2 1 0

Instruction Cache Line Address (PMD0) rsv. stat
59 3 2

63 13 12 11 0

reserved (PMD1) ov latency
51 1 12
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-25

Performance Monitoring
10.3.7.2 Instruction EAR Cache Mode (PMC10.ct=’1x)

When PMC10.ct is 1x, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmable threshold are captured. The threshold is specified as a four bit umask field in the
configuration register PMC10. Possible threshold values are defined in Table 10-15.

As defined in Table 10-16, the address of the instruction cache line missed the L1 instruction cache
is provided in PMD0. If no qualified event was captured, the valid bit in PMD0 is zero. The latency
of the captured instruction cache miss in CPU clock cycles is provided in the latency field of
PMD1. In cache mode, the TLB miss bit of PMD0 is undefined.

10.3.7.3 Instruction EAR TLB Mode (PMC10.ct=00)

When PMC10.ct is ‘00, the instruction event address register captures addresses of instruction TLB
misses. The unit mask allows event address collection to capture specific subsets of instruction
TLB misses. Table 10-17 summarizes the instruction TLB umask settings. All combinations of the
mask bits are supported.

Table 10-15. Instruction EAR (PMC10) umask Field in Cache Mode (PMC10.ct=’1x)

umask
Bits 12:5

Latency Threshold
[CPU Cycles]

umask
Bits 12:5

Latency Threshold
[CPU Cycles]

01xxxxxx >0 (All L1 Misses) 11100000 >=256

11111111 >=4 -------- >=512

11111110 >=8 11000000 >=1024

11111100 >=16 -------- >=2048

11111000 >=32 10000000 >=4096

-------- >=64 other undefined

11110000 >=128 00000000 RAB hit

(All L1 misses which hit in RAB)

Table 10-16. Instruction EAR (PMD0,1) in Cache Mode (PMC10.ct=’1x)

Register Field Bits Description

PMD0 stat 1:0 Status

x0: EAR did not capture qualified event
x1: EAR contains valid event data

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache miss

PMD1 latency 11:0 Latency in CPU clocks

overflow 12 If 1, latency counter has overflowed one or more times
before data was returned

Table 10-17. Instruction EAR (PMC10) umask Field in TLB Mode (PMC10.ct=00)

ITLB Miss Type PMC.umask[7:5] Description

— 000 Disabled; nothing will be counted

L2TLB xx1 L1 ITLB misses which hit L2 TLB

VHPT x1x L1 Instruction TLB misses that hit VHPT
10-26 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
As defined in Table 10-18 the address of the instruction cache line fetch that missed the L1 ITLB is
provided in PMD0. The stat bit [1] indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. If no qualified event was captured, the valid bit in PMD0 reads
zero. In TLB mode, the latency field of PMD1 is undefined.

10.3.8 Data EAR (PMC11, PMD2,3,17)

The data event address configuration register (PMC11) can be programmed to monitor either L1
data cache load misses, FP loads, L1 data TLB misses, or ALAT misses. Figure 10-20 and
Table 10-19 detail the register layout of PMC11. Figure 10-21 describes the associated event
address data registers PMD2,3,17. The mode bits in configuration register PMC11 select data cache,
data TLB, or ALAT monitoring. The interpretation of the umask field and registers PMD2,3,17
depends on the setting of the mode bits and is described in Section 10.3.8.1, “Data Cache Load
Miss Monitoring (PMC11.mode=00)” for data cache load miss monitoring, Section 10.3.8.2, “Data
TLB Miss Monitoring (PMC11.mode=‘01)” for data TLB monitoring, and Section 10.3.8.3,
“ALAT Miss Monitoring (PMC11.mode=‘1x)” for ALAT monitoring.

FAULT 1xx Instruction TLB miss produced by an ITLB Miss Fault

ALL 111 Select all L1 ITLB Misses

NOTE: All combinations are supported.

Table 10-17. Instruction EAR (PMC10) umask Field in TLB Mode (PMC10.ct=00) (Continued)

ITLB Miss Type PMC.umask[7:5] Description

Table 10-18. Instruction EAR (PMD0,1) in TLB Mode (PMC10.ct=‘00)

Register Field Bits Description

PMD0 stat 1:0 Status Bits

00: EAR did not capture qualified event

01: L1 ITLB miss hit in L2 ITLB

10: L1 ITLB miss hit in VHPT

11: L1 ITLB miss produced an ITLB Miss Fault

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB miss

PMD1 latency 11:2 Undefined in TLB mode

Figure 10-20. Data Event Address Configuration Register (PMC11)
63 26 25 24 23 20 19 16 15 9 8 7 6 5 4 3 0

reserved. ism reserved umask reserved mode pm rsv. plm
38 2 4 4 7 2 1 2 4

Table 10-19. Data Event Address Configuration Register Fields (PMC11)

Field Bits Description

plm 3:0 See Table 10-5 “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12).”

pm 6 See Table 10-5 “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12).”
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-27

Performance Monitoring
10.3.8.1 Data Cache Load Miss Monitoring (PMC11.mode=00)

If the Data EAR is configured to monitor data cache load misses, the umask is used as a load
latency threshold defined by Table 10-20.

As defined in Table 10-22, the instruction and data addresses as well as the load latency of a
captured data cache load miss are presented to software in three registers PMD2,3,17. If no qualified
event was captured, the valid bit in PMD3 is zero.

HPW accesses will not be monitored. setf and reads from ccv will not be monitored. If an L1D
cache miss is not at least 7 clocks after a captured miss, it will not be captured. Semaphore
instructions and floating-point loads will be counted.

mode 8:7 Data EAR mode selector:

‘00: L1 data cache load misses and FP loads

‘01: L1 data TLB misses

‘1x: ALAT misses

umask 19:16 Data EAR unit mask

mode 00: data cache unit mask (definition see Table 10-20, “Data EAR (PMC11) Umask
Fields in Data Cache Mode (PMC11.mode=00)”)

mode 01: data TLB unit mask (definition see Table 10-22, “Data EAR (PMC11) Umask
Field in TLB Mode (PMC10.ct=01)”)

ism 25:24 See Table 10-5 “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12).”

Figure 10-21. Data Event Address Register Format (PMD2,3,17)
63 4 3 2 1 0

Instruction Address (PMD17) vl bn slot
60 1 1 2

63 62 61 15 14 13 12 0

reserved (PMD3) stat ov latency
2 50 12

63 0

Data Address (PMD2)

64

Table 10-19. Data Event Address Configuration Register Fields (PMC11) (Continued)

Field Bits Description

Table 10-20. Data EAR (PMC11) Umask Fields in Data Cache Mode (PMC11.mode=00)

umask
Bits 19:16

Latency
Threshold

[CPU Cycles]

umask
Bits 19:16

Latency
Threshold

[CPU Cycles]

0000 >= 4 (Any latency) 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.
10-28 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
The detection of data cache load misses requires a load instruction to be tracked during multiple
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Itanium 2 processor data cache miss event address register
can only track a single load at a time, not all data cache load misses may be captured. When the
processor hardware captures the address of a load (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched
into PMD2,3,17. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache load miss from always being captured (in a regular sequence of
overlapped data cache load misses). While this mechanism will not always capture all data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

10.3.8.2 Data TLB Miss Monitoring (PMC11.mode=‘01)

If the Data EAR is configured to monitor data TLB misses, the umask defined in Table 10-23
determines which data TLB misses are captured by the Data EAR. For TLB monitoring, all
combinations of the mask bits are supported.

As defined in Table 10-23 the instruction and data addresses of captured DTLB misses are
presented to software in PMD2,17. If no qualified event was captured, the valid bit in PMD17 reads
zero. When programmed for data TLB monitoring, the contents of the latency field of PMD3 are
undefined.

Both load and store TLB misses will be captured. Some unreached instructions will also be
captured. For example, if a load misses in L1DTLB but hits in L2 DTLB and is in an instruction
group after a taken branch, it will be captured. Stores and floating-point operations never miss in
L1DTLB but could miss the L2 DTLB or fault to be handled by software.

Table 10-21. PMD2,3,17 Fields in Data Cache Load Miss Mode (PMC11.mode=00)

Register Fields Bit Range Description

PMD2 Data Address 63:0 64-bit virtual address of data item that caused miss

PMD3 latency 12:0 Latency in CPU clocks

overflow 13 Overflow - If 1, latency counter has overflowed one or more
times before data was returned

stat 15:14 Status bits;
00: No valid information in PMD2,17 and rest of PMD3
01: Valid information in PMD2,3 and may be in PMD17

NOTE: These bits should be cleared before the EAR is
reused.

PMD17 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory
instruction

bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed
bundles is associated with the captured miss

vl 3 Valid bit;
0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is reused

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle dispersal
window which was being executed at the time of the miss. If
“.bn” is 1 then the second bundle contains memory
instruction and 16 should be added to the address.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-29

Performance Monitoring
Note: PMC12 must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

Table 10-22. Data EAR (PMC11) Umask Field in TLB Mode (PMC10.ct=01)

L1 DTLB Miss
Type PMC.umask[19:16] Description

--- 000x Disabled; nothing will be counted

L2DTLB xx1x L1 DTLB misses which hit L2 DTLB

VHPT x1xx L1 DTLB misses that hit VHPT

FAULT 1xxx Data TLB miss produced a fault

ALL 111x Select all L1 DTLB Misses

NOTE: All combinations are supported.

Table 10-23. PMD2,3,17 Fields in TLB Miss Mode (PMC11.mode=‘01)

Register Field Bit Range Description

PMD2 Data Address 63:0 64-bit virtual address of data item that caused miss

PMD3 latency 12:0 Undefined in TLB Miss mode

ov 13 Undefined in TLB Miss mode

stat 15:14 Status
00: invalid information in PMD2,17 and rest of PMD3

01: L2 Data TLB hit
10: VHPT hit
11: Data TLB miss produced a fault

NOTE: These bits should be cleared before the EAR is
reused.

PMD17 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory
instruction.

bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed
bundles is associated with the captured miss

vl 3 Valid bit;
0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle
dispersal window which was being executed at the time of
the miss. If “.bn” is 1 then the second bundle contains
memory instruction and 16 should be added to the
address.
10-30 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
10.3.8.3 ALAT Miss Monitoring (PMC11.mode=‘1x)

As defined in Table 10-24, the address of the instruction (failing chk.a and ld.c) causing an
ALAT miss is presented to software in PMD17. If no qualified event was captured, the valid bit in
PMD17 reads zero. When programmed for ALAT monitoring, the latency field of PMD3 and the
contents of PMD2 are undefined.

Note: PMC12 must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

10.3.9 Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent Itanium branch
instructions and their predictions and outcomes. The Itanium 2 branch trace buffer configuration
register (PMC12) defines the conditions under which branch instructions are captured, and allows
the trace buffer to capture specific subsets of branch events. The branch trace buffer operates only
during Itanium-based code execution, i.e. when PSR.is is zero. When running IA-32 ISA, the
branch trace buffer is not updated.

In every cycle in which a qualified Itanium branch retires, its source bundle address and slot
number are written to the branch trace buffer. The branches’ target address is written to the next
buffer location. If the target instruction bundle itself contains a qualified Itanium branch, the
branch trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace
buffer entries: one that records the target instruction as a branch target (b-bit cleared), and another
that records the target instruction as a branch source (b-bit set). As a result, the branch trace buffer
may contain a mixed sequence of the branches and targets.

Table 10-24. PMD2,3,17 Fields in ALAT Miss Mode (PMC11.mode=‘1x)

Register Field Bit Range Description

PMD2 Data Address 63:0 Undefined in ALAT Miss Mode

PMD3 latency 12:0 Undefined in ALAT Miss mode

ov 13 Undefined in ALAT Miss mode

stat 15:14 Status bits;
00: No valid information in PMD2,17 and rest of PMD3
01: Valid information in PMD2,3 and may be in PMD17

NOTE: These bits should be cleared before the EAR is
reused.

PMD17 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory
instruction

bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed
bundles is associated with the captured miss

vl 3 Valid bit;
0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle
dispersal window which was being executed at the time of
the miss. If “.bn” is 1 then the second bundle contains
memory instruction and 16 should be added to the
address.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-31

Performance Monitoring
10.3.9.1 Branch Trace Buffer Collection Conditions

The branch trace buffer configuration register (PMC12) defines the conditions under which branch
instructions are captured. These conditions are given in Figure 10-22 and Table 10-25, which refer
to conditions associated with the branch prediction. These conditions are:

• Whether the target of the branch should be captured or additional information about the
prediction should be captured

• The path of the branch (not taken/taken), and

• Whether or not the branch path was mispredicted

• Whether or not the target of the branch was mispredicted

• What type of branch should be captured

Figure 10-22. Branch Trace Buffer Configuration Register (PMC12)
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved brt ppm ptm tm ds pm rsv. plm
48 2 2 2 2 1 1 2 4

Table 10-25. Branch Trace Buffer Configuration Register Fields (PMC12)

Field Bits Description

plm 3:0 See Table 10-5, “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12)”

pm 6 See Table 10-5, “Performance Monitor PMC Register Control Fields (PMC4,5,6,7,
0,11,12)”

ds 7 Data selector:
1: capture info about branch predictions
0: capture branch target

tm 9:8 Taken Mask:
11: all Itanium® branches
10: Taken Itanium branches only
01: Not Taken Itanium branches only
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:
11: capture branch regardless of target prediction outcome
10: branch target address predicted correctly
01: branch target address mispredicted
00: No branch is captured

ppm 13:12 Predicted Predicate Mask:
11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

brt 15:14 Branch Type Mask:
11: only non-return indirect branches captured
10: only return branches will be captured
01: only IP-relative branches will be captured
00: all branches are captured
10-32 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
To summarize, an Itanium branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is)
and ((tm[1] - branch taken)

or (tm[0] - branch not taken)
)

and ((ptm[1] - hardware predicted target address correctly)
or (ptm[0] - hardware mispredicted target address)

)
and ((ppm[1] - hardware predicted the branch path correctly)

or (ppm[0] - hardware mispredicted the branch path)
)

and (not (not ptm[1] and ptm[0] and not ppm[1] and ppm[0])
) - hardware mispredicted path AND target

and (not ds
)

To capture all correctly predicted Itanium branches, the Itanium 2 branch trace buffer configuration
settings in PMC12 should be: ds=0, tm=11, ptm=10, ppm=10, brt=00.

Either branches whose path was mispredicted can be captured (ds=0, tm=11, ptm=11,
ppm=01,brt=00) or branches with a target misprediction (ds=0, tm=11, ptm=01, ppm=11,brt=00)
can be captured, but not both. A setting of ds=0, tm=11, ptm=01, ppm=01, brt=00 will result in an
empty buffer. If a branch’s path is mispredicted, no target prediction is recorded.

Instruction Address Range Matching (Section 10.3.5, “Instruction Address Range Matching”) and
Opcode Matching (Section 10.3.4, “Opcode Match Check (PMC8,9,15)”) may also be used to
constrain what is captured in the Branch Trace Buffer.

10.3.9.2 Branch Trace Buffer Reading

Figure 10-23. Branch Trace Buffer Register Format (PMD8-15, where PMC12.ds == 0)
63 4 3 2 1 0

Address slot mp b

60 2 1 1

Figure 10-24. Branch Trace Buffer Register Format (PMD8-15, where PMC12.ds == 1)
63 61 60 41 40 4 3 2 1 0

Addr Prediction Detail Address slot mp b

3 20 37 2 1 1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-33

Performance Monitoring
The eight branch trace buffer registers PMD8-15 provide information about the outcome of a
captured branch sequence. The branch trace buffer registers (PMD8-15) contain valid data only
when event collection is frozen (PMC0.fr is one). While event collection is enabled, reads of
PMD8-15 return undefined values. The registers follow the layout defined in Figure 10-23,
Figure 10-24, and Table 10-26 contain the address of either a captured branch instruction (b-bit=1)
or a branch target (b-bit=0) or branch prediction details. For branch instructions, the mp-bit
indicates a branch misprediction. A branch trace register with a zero b-bit and a zero mp-bit
indicates an invalid branch trace buffer entry. The slot field captures the slot number of the first
taken Itanium branch instruction in the captured instruction bundle. A slot number of 3 indicates a
not-taken branch. The target address bundle of a branch to IA-32 (br.ia) is recorded. An IA-32
JMPE branch instruction and its Itanium target are not recorded.

In every cycle in which a qualified Itanium branch retires1, its source bundle address and slot
number are written to the branch trace buffer. If within the next clock, the target instruction bundle
contains a branch that retires and meets the same conditions, the address of the second branch is
stored. Otherwise, either the branches’ target address (PMC12.ds=0) or details of the branch
prediction (PCM12.ds=1) are written to the next buffer location. As a result, the branch trace buffer
may contain a mixed sequence of the branches and targets.

In order to be able to record more information in the trace buffer, there are two cases which will not
have the branch target/prediction history recorded:

• Taken IP-relative branches with PMC12.ds == 0

• Not-Taken branches with PMC12.ds == 0

The Itanium 2 branch trace buffer is a circular buffer containing the last four to eight qualified
Itanium branches. The Branch Trace Buffer Index Register (PMD16) defined in Figure 10-25 and
Table 10-27 identify the most recently recorded branch or target. In every cycle in which a
qualified branch or target is recorded, the branch buffer index (bbi) is post-incremented. After 8
entries have been recorded, the branch index wraps around, and the next qualified branch will

Table 10-26. Branch Trace Buffer Register Fields (PMD8-15)

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction
0: contents of register is a branch target or contains branch prediction detail

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)
if b=1 and mp=0: correctly predicted branch

if b=0 and mp=1: valid target address
if b=0 and mp=0: invalid branch trace buffer register

slot 3:2 if b=0: undefined
if b=1: Slot index of first taken branch instruction in bundle
00: Itanium Slot 0 branch/target
01: Itanium Slot 1 branch/target
10: Itanium Slot 2 branch/target
11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of Itanium branch instruction
if ds=0 and b=0: 60-bit target bundle address of Itanium branch instruction

if ds=1 and b=0: Upper 3 bits and lower 37 bits of the bundle address of Itanium®
branch instruction and the lower 20 bits of the L1 IBR associated with the captured
branch

1. In some cases, the Itanium® 2 processor branch trace buffer will capture the source (but not the target) address of an excepting branch
instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and multi-way branches.
10-34 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
overwrite the first trace buffer entry. The wrap condition itself is recorded in the full bit of PMD16.
The bbi field of PMD16 defines the next branch buffer index that is about to be written.The
following formula computes the last written branch trace buffer PMD index from the contents of
PMD16:

last-written-PMD-index = 8+ ([(8*PMD16.full) + (PMC16.bbi - 1)] % 8)

If both the full bit and the bbi field of PMD16 are zero, no qualified branch has been captured by
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from
PMD15 to PMD8. Once set, the full bit remains set until explicitly cleared by software, i.e. it is a
sticky bit. Software can reset the bbi index and the full bit by writing to PMD16.

Figure 10-25. Branch Trace Buffer Index Register Format (PMD16)
63 36 35 32 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 2 0

reserved pmd
15
ext

pmd
14
ext

pmd
13
ext

pmd
12
ext

pmd
11
ext

pmd
10
ext

pmd
9

ext

pmd8
ext

full bbi

28 4 4 4 4 4 4 4 4 1 3

Table 10-27. Branch Trace Buffer Index Register Fields (PMD16)

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD8]
Pointer to the next branch trace buffer entry to be written
if full=1: points to the oldest recorded branch/target
if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped
if full=0: branch trace buffer has not wrapped

pmd8 ext 7:4 bit[7:6] Not used

bit[5] (bruflush):

If PMD8.bits[1:0] = 11,

1 = back-end mispredicted the branch and the pipeline was flushed by it

0 = no pipeline flushes are associated with this branch

bit[4] (b1):

if b = 1

1 = branch was from bundle 1, add 0x1 to PMD8.bits[63:4]

0 = branch was from bundle 0

pmd9 ext 11:8 Same as above for PMD9

pmd10 ext 15:12 Same as above for PMD10

pmd11 ext 19:16 Same as above for PMD11

pmd12 ext 23:20 Same as above for PMD12

pmd13 ext 27:24 Same as above for PMD13

pmd14 ext 31:28 Same as above for PMD14

pmd15 ext 35:32 Same as above for PMD15
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-35

Performance Monitoring
10.3.10 Interrupts

As mentioned in Table 10-6, each one of registers PMD4,5,6,7 will cause an interrupt if the
following conditions are all true:

• PMCi.oi=1 (i.e. overflow interrupt is enabled for PMDi) and PMDi overflows. Note that there
is only one interrupt line that will be raised regardless of which PMC/PMD set meets this
condition.

This interrupt is an “External Interrupt” with Vector= 0x3000 and will be recognized only if the
following conditions are true:

• PMV.m=0 and PMV.vector is set up correctly; i.e. Performance Monitor interrupts are not
masked and a proper vector is programmed for this interrupt by executing a “mov
cr73=r2”.

• PSR.i =1 and PSR.ic=1; i.e. interruptions are unmasked and interruption collection is enabled
in the Processor Status Register by executing either the “ssm imm” or “mov psr.l=r2”
instruction.

• TPR.mmi=0 (i.e. all external interrupts are not masked) and TPR.mic is a value that the
priority class that Performance Monitor Interrupt belongs to are not masked. For example if
we assign vector 0xD2 to the Performance Monitor Interrupt, according to Table 5-7 “Interrupt
Priorities, Enabling, and Masking”in Volume 2 of the Intel® Itanium® Architecture Software
Developer’s Manual, it will be priority class 13. So any value less than 13 for TPR.mic is okay
for recognizing this interrupt. A “mov cr66=r1” will write to this register.

• There are no higher priority faults, traps, or external interrupts pending.

Interrupt Service routine needs to read IVR register “mov r1=cr65” in order to figure out the
highest priority external interrupt which needs to be serviced.

Before returning from interrupt service routine, the Performance Monitor needs to be initialized
such that the interrupt will be cleared. This could be done by clearing the PMC.oi and/or
re-initializing the PMD which caused the interrupt (you will know this by reading PMC0). In
addition to this, all bits of PMC0 need to be cleared if further monitoring needs to be done.

10.3.10.1 External Events

As mentioned in theTable 10-6, each PMD will cause an external event on the BPM# pin if the
following conditions are all true: Currently the signal will reflect the value of the overflow bit of
the PMD [47]. Meaning once it made a 0 to 1 transition, it will make a 1 to 0 transition either when
the PMD was re-written with bit W=0 or when PMD overflows one more time.

• PMCi.ev=1 (i.e. external event is enabled for PMDi) and PMDi overflows (read bit 47 of
PMDi=1). This pin will stay high as long as these conditions are true.

• BPM[5:0] are bidirectional processor pins allocated for debug and performance monitor. The
exact method of enabling these pins is not known at this time. But there will be a way to
determine their direction (in versus out) and which information will show up on them (output)
or how the information will be used (input).

10.3.11 Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi and ev of all PMC registers are zero, and
PMV.m is set to one. This ensures that no interrupts are generated, and events are not externally
visible. On reset, PAL firmware ensures that the instruction address range check, the opcode
matcher and the data address range check are initialized as follows:
10-36 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring
• PMC8,9 = 0xffffffffffffffff, (match all opcodes)

• PMC13 = 0x2078fefefefe, (no memory pipeline event constraints)

• PMC14 = 0xdb6, (no instruction address range constraints)

• PMC15 = 0xfffffff0, (no opcode match constraints)

All other performance monitoring related state is undefined.

PAL Call: As defined in the in Volume 2 of the Intel® Itanium® Architecture Software Developer’s
Manual, the PAL call PAL_PERF_MON_INFO provides software with information about the
implemented performance monitors. The Itanium 2 processor specific values are summarized in
Table 10-28.

Low Power State: On the Itanium 2 processors, PAL_HALT_LIGHT selectively freezes specific
performance monitoring events in order to preserve them prior to powering down the processor.
Below is a list of performance monitors that will continue to be monitored while all others are
frozen:

• BUS_ALL.IO

• BUS_ALL.ANY

• BUS_DATA_CYCLE

• BUS_IO.IO

• BUS_IO.ANY

• BUS_LOCK.ANY

• BUS_MEMORY.EQ_128BYTE.IO

• BUS_MEMORY.EQ_128BYTE.ANY

• BUS_MEMORY.LT_128BYTE.IO

Table 10-28. Information Returned by PAL_PERF_MON_INFO for the Itanium® 2
Processor

PAL_PERF_MON_INFO
Return Value Description

Itanium® 2
Processor Specific

Value

PAL_RETIRED 8-bit unsigned event type for counting the number of
untagged retired Itanium instructions

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of
running CPU cycles

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits 48

PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs 4

PAL_PMCmask 256-bit mask defining which PMC registers are
populated

0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are
populated

0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can
count running CPU cycles (event defined by
PAL_CYCLES)

0xF0

PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can
count untagged retired Itanium instructions (event
defined by PAL_RETIRED)

0xF0
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 10-37

Performance Monitoring
• BUS_MEMORY.LT_128BYTE.ANY

• BUS_MEMORY.ALL_128BYTE.IO

• BUS_MEMORY.ALL_128BYTE.ANY

• BUS_MEM_READ.BIL.IO

• BUS_MEM_READ.BIL.ANY

• BUS_MEM_READ.BRL.IO

• BUS_MEM_READ.BRL.ANY

• BUS_MEM_READ.BRIL.IO

• BUS_MEM_READ.BRIL.ANY

• BUS_MEM_READ.ALL.IO

• BUS_MEM_READ.ALL.ANY

• BUS_RD_DATA.IO

• BUS_RD_DATA.ANY

• BUS_RD_IO.IO

• BUS_RD_IO.ANY

• BUS_RD_PRTL.IO

• BUS_RD_PRTL.ANY

• BUS_SNOOPS.IO

• BUS_SNOOPS.ANY

• BUS_SNOOPS_HITM.ANY

• BUS_SNOOP_STALL_CYCLES.ANY

• BUS_WR_WB.EQ_128BYTE.IO

• BUS_WR_WB.EQ_128BYTE.ANY

• BUS_WR_WB.CCASTOUT.ANY

• BUS_WR_WB.ALL.IO

• BUS_WR_WB.ALL.ANY

• L1I_PURGE

• MEM_READ_CURRENT.IO

• MEM_READ_CURRENT.ANY
10-38 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events 11

11.1 Introduction

This chapter describes the architectural and microarchitectural events measurable on the Itanium 2
processor through the performance monitoring mechanisms described earlier in Chapter 10. The
early sections of this chapter provide a categorized high-level view of the event list, grouping
logically related events together. Computation (either directly by a counter in hardware or
indirectly as a “derived” event) of common performance metrics is also discussed. Each directly
measurable event is then described in greater detail in the alphabetized list of all processor events
in Chapter 11, “Categorization of Events.”

The Itanium 2 processor is capable of monitoring numerous events. The majority of events can be
selected as input to any of the PMD4-7 by programming bit [15:8] of the corresponding PMC to the
hexadecimal values shown in the “event code” field of the event list. Please refer to Section 11.8.2
and Section 11.8.3 for events that have more specific requirements.

11.2 Categorization of Events

Performance related events are grouped into the following categories:

• Basic Events: Clock cycles, retired instructions (Section 11.3)

• Instruction Dispersal Events: Instruction decode and issue (Section 11.4)

• Instruction Execution Events: Instruction execution, data and control speculation, and memory
operations (Section 11.5)

• Stall Events: Stall and execution cycle breakdowns (Section 11.6)

• Branch Events: Branch prediction (Section 11.7)

• Memory Hierarchy: Instruction and data caches (Section 11.8)

• System Events: Operating system monitors (Section 11.9)

• TLB Events: Instruction and data TLBs (Section 11.10)

• System Bus Events: (Section 11.11)

• RSE Events: Register Stack Engine (Section 11.12)

Each section listed above includes a table providing information on directly measurable events.
The section may also contain a second table of events that can be derived from those that are
directly measurable. These derived events may simply rename existing events or present steps to
determine the value of common performance metrics. Derived events are not, however, discussed
in the systematic event listing in Section 11.14.

Directly measurable events often use the PMC.umask field (See Section 10.3.2, “Performance
Counter Registers”) to measure a certain variant of the event in question. Symbolic event names for
such events include a period to indicate use of the umask, specified by four bits in the detailed
event description (x’s are for don’t-cares).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-1

Performance Monitor Events
The summary tables in the subsequent sections define events by specifying the following
attributes:

• Symbol Name - Symbolic name used to denote this event.

• Event Code - Hexadecimal value to program into bits [15:8] of the appropriate PMC register in
order to measure this event.

• IAR - Can this event be constrained by the Instruction Address Range registers?

• DAR - Can this event be constrained by the Data Address Range registers?

• OPC - Can this event by constrained by the Opcode Match registers?

• Max Inc/Cyc - Maximum Increment Per Cycle or the maximum value this event may be
increased by each cycle.

• Description - Brief description of the event.

11.3 Basic Events

Table 11-1 summarizes two basic execution monitors. The CPU_CYCLES event can be used to
break out separate or combined Itanium architecture/IA-32 cycle counts by constraining the
PMC/PMD based on the currently executing instruction set. The Itanium 2 retired instruction
count, IA64_INST_RETIRED, includes predicated true instructions and nop instructions, but
excludes RSE operations.

Table 11-1. Performance Monitors for Basic Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

CPU_CYCLES 0x12 N N N 1 CPU Cycles

IA64_INST_RETIRED 0x08 Y N Y 6 Retired Itanium® Instructions

IA32_INST_RETIRED 0x59 N N N 2 IA-32 Instructions Retired

IA32_ISA_TRANSITIONS 0x07 N N N 1 Itanium to/from IA-32 ISA Transitions

Table 11-2. Derived Monitors for Basic Events

Symbol Name Description Equation

IA64_IPC Average Number of Itanium®
Instructions Per Cycle During
Itanium-based Code Sequences

IA64_INST_RETIRED / CPU_CYCLES

IA32_IPC Average Number of IA-32
Instructions Per Cycle During
IA-32 Code Sequences

IA32_INST_RETIRED / CPU_CYCLES

AVG_CPT Average Number of Cycles per
ISA Transition

CPU_CYCLES / (ISA_TRANSITIONS * 2)

AVG_IA32_IPT Average Number of IA-32
Instructions per ISA Transition

IA32_INST_RETIRED / (IA32_ISA_TRANSITIONS / 2)

AVG_IA64_IPT Average Number of Itanium
Instructions per ISA Transition

IA64_INST_RETIRED / (IA32_ISA_TRANSITIONS / 2)
11-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
11.4 Instruction Dispersal Events

Instruction cache lines are delivered to the execution core and dispersed to the Itanium 2 processor
functional units. The Itanium 2 processor can issue, or disperse, 6 instructions per clock cycle. In
other words, the Itanium 2 processor can issue to 6 instruction slots (or syllables).The following
events are intended to give users an idea of how effectively instructions are dispersed and why they
are not dispersed at full capacity. There are five reasons for not dispersing at full capacity. One is
measured by DISP_STALLED. For every clock that dispersal is stalled, dispersal takes a hit of
6-syllables. The other four reasons are measured by SYLL_NOT_DISPERSED. Due to the way
the hardware is designed, SYLL_NOT_DISPERSED may contain an overcount due to implicit and
explicit bits; although this number should be small, SYLL_OVERCOUNT will provide an accurate
count for it.

The relationship between these events is as follows:

• 6*(CPU_CYCLES-DISP_STALLED) = INST_DISPERSED +
SYLL_NOT_DISPERSED.ALL - SYLL_OVERCOUNT.ALL

11.5 Instruction Execution Events

Retired instruction counts, IA64_TAGGED_INST_RETIRED and NOPS_RETIRED, are based on
tag information specified by the address range check and opcode match facilities. A separate event,
PREDICATE_SQUASHED_RETIRED, is provided to count predicated off instructions.

The FP monitors listed in the table capture dynamic information about pipeline flushes and
flush-to-zero occurrences due to floating-point operations. The FP_OPS_RETIRED event counts
the number of retired FP operations.

As Table 11-4 describes, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED.ALL),
the number of advanced load checks and check loads (INST_CHKA_LDC_ALAT.ALL), and
failed advanced load checks and check loads (INST_FAILED_CHKA_LDC_ALAT.ALL) as seen
by the ALAT. The number of retired chk.s instructions is monitored by the
IA64_TAGGED_INST_RETIRED event, given the appropriate opcode mask. Since the Itanium 2
processor ALAT is updated by operations on mispredicted branch paths, the number of advanced
load checks and check loads need an explicit event (INST_CHKA_LDC_ALAT.ALL).

Table 11-3. Performance Monitors for Instruction Dispersal Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DISP_STALLED 0x49 N N N 1 Number of cycles dispersal stalled

INST_DISPERSED 0x4d Y N N 6 Syllables dispersed from REN to REG
stage

SYLL_NOT_DISPERSED 0x4e Y N N 5 Syllables not dispersed

SYLL_OVERCOUNT 0x4f Y N N 2 Syllables overcounted
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-3

Performance Monitor Events
11.6 Stall Events

Itanium 2 processor stall accounting is separated into front-end and back-end stall accounting.
Back-end and front-end events should not be compared since they are counted in different stages of
the pipeline.

The back-end can be stalled due to five distinct mechanisms: FPU/L1D, RSE, EXE,
branch/exception or the front-end. BACK_END_BUBBLE provides an overview of which
mechanisms are producing stalls while the other back-end counters provide more explicit
information broken down by category. Each time there is a stall, a bubble is inserted in only one
location in the pipeline. Each time there is a flush, bubbles are inserted in all locations in the

Table 11-4. Performance Monitors for Instruction Execution Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

ALAT_CAPACITY_MISS 0x58 Y Y Y 2 ALAT Entry Replaced

FP_FAILED_FCHKF 0x06 Y N N 1 Failed fchkf

FP_FALSE_SIRSTALL 0x05 Y N N 1 SIR stall without a trap

FP_FLUSH_TO_ZERO 0x0b Y N N 2 FP Result Flushed to Zero

FP_OPS_RETIRED 0x09 Y N N 8 Retired FP operations

FP_TRUE_SIRSTALL 0x03 Y N N 1 SIR stall asserted and leads to a trap

IA64_TAGGED_INST_RETIRED 0x08 Y N Y 6 Retired Tagged Instructions

INST_CHKA_LDC_ALAT 0x56 Y Y Y 2 Advanced Check Loads

INST_FAILED_CHKA_LDC_ALAT 0x57 Y Y Y 1 Failed Advanced Check Loads

INST_FAILED_CHKS_RETIRED 0x55 N N N 1 Failed Speculative Check Loads

LOADS_RETIRED 0xcd Y Y Y 4 Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 Retired Misaligned Load Instructions

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 Retired Misaligned Store Instructions

NOPS_RETIRED 0x50 Y N Y 6 Retired NOP Instructions

PREDICATE_SQUASHED_RETIRED 0x51 Y N Y 6 Instructions Squashed Due to
Predicate Off

STORES_RETIRED 0xd1 Y Y Y 2 Retired Stores

UC_LOADS_RETIRED 0xcf Y Y Y 4 Retired Uncacheable Loads

UC_STORES_RETIRED 0xd0 Y Y Y 2 Retired Uncacheable Stores

Table 11-5. Derived Monitors for Instruction Execution Events

Symbol Name Description Equation

ALAT_EAR_EVENTS Counts the number of ALAT
events captured by EAR

DATA_EAR_EVENTS

CTRL_SPEC_MISS_RATIO Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL /
IA64_TAGGED_INST_RETIRED[chk.s]

DATA_SPEC_MISS_RATIO Data Speculation Miss Ratio INST_FAILED_CHKA_LDC_ALAT.ALL /
INST_CHKA_LDC_ALAT.ALL
11-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
pipeline. With the exception of BACK_END_BUBBLE, the back-end stall accounting events are
prioritized in order to mimic the operation of the main pipe (i.e. priority form high to low is given
to: BE_FLUSH_BUBBLE.XPN, BE_FLUSH_BUBBLE.BRU, L1D_FPU stalls, EXE stalls, RSE
stalls, front-end stalls). This prioritization guarantees that the events are mutually exclusive and
only the most important cause, the one latest in the pipeline, is counted.

The Itanium 2 processor’s front-end can be stalled due to seven distinct mechanisms: FEFLUSH,
TLBMISS, IMISS, branch, FILL-RECIRC, BUBBLE, IBFULL (listed in priority from high to
low). The front-end stalls have exactly the same effect on the pipeline so their accounting is
simpler.

During every clock, the back-end pipeline has either a bubble or it retires 1 or more instructions,
CPU_CYCLES = BACK_END_BUBBLE.all + (IA64_INST_RETIRED >= 1). To further
investigate bubbles occurring in the back-end of the pipeline the following equation holds true:
BACK_END_BUBBLE.all = BE_RSE_BUBBLE.all + BE_EXE_BUBBLE.all +
BE_L1D_FPU_BUBBLE.all + BE_FLUSH_BUBBLE.all + BACK_END_BUBBLE.fe.

Each of the stall events (summarized in Table 11-6) take a umask to choose among several
available sub-events. Please refer to the detailed event descriptions in Section 11.14 for a list of
available sub-events and their individual descriptions.

11.7 Branch Events

Note that for branch events, retirement means a branch was reached and committed regardless of
its predicate value. Details concerning prediction results are contained in pairs of monitors. For
accurate misprediction counts, the following measurement must be taken:

BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL2.[umask]

By performing this calculation for every umask, one can obtain a true value for the
BR_MISPRED_DETAIL event.

Table 11-6. Performance Monitors for Stall Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BACK_END_BUBBLE 0x00 N N N 1 Full pipe bubbles in main pipe

BE_EXE_BUBBLE 0x02 N N N 1 Full pipe bubbles in main pipe due to
Execution unit stalls

BE_FLUSH_BUBBLE 0x04 N N N 1 Full pipe bubbles in main pipe due to
flushes

BE_L1D_FPU_BUBBLE 0xca N N N 1 Full pipe bubbles in main pipe due to
FP or L1D cache

BE_LOST_BW_DUE_TO_FE 0x72 N N N 2 Invalid bundles if BE not stalled for
other reasons

BE_RSE_BUBBLE 0x01 N N N 1 Full pipe bubbles in main pipe due to
RSE stalls

FE_BUBBLE 0x71 N N N 1 Bubbles seen by FE

FE_LOST_BW 0x70 N N N 2 Invalid bundles at the entrance to IB

IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 N N N 2 Invalid bundles at the exit from IB
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-5

Performance Monitor Events
The method for obtaining the true value of BR_PATH_PRED is slightly different. When there is
more than one branch in a bundle and one is predicted as taken, all the higher number ports are
forced to a predicted not taken mode without actually knowing the their true prediction.

The true OKPRED_NOTTAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type].OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type].UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL,
RETURN, NRETIND) specified for both events.

Similarly, the true MISPRED_TAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type].MISPRED_TAKEN - BR_PATH_PRED2.[branch
type].UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

BRANCH_EVENT counts the number of events captured by the Branch Trace Buffer (also known
as Branch EARs). For detailed information on the Branch EARs please refer to Section 10.3.9,
“Branch Trace Buffer”.

11.8 Memory Hierarchy

This section summarizes events related to the Itanium 2 processor’s memory hierarchy. The
memory hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch Events (Section 11.8.1)

• L1 Data Cache Events (Section 11.8.2)

• L2 Unified Cache Events (Section 11.8.3)

• L3 Cache Events (Section 11.8.4)

An overview of the Itanium 2 processor’s three level memory hierarchy and its event monitors is
shown in Figure 11-1. The instruction and the data stream work through separate L1 caches. The
L1 data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and data
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache
hierarchy are described in the following three sections.

Table 11-7. Performance Monitors for Branch Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BE_BR_MISPRED_DETAIL 0x61 Y N Y 1 BE branch misprediction detail

BRANCH_EVENT 0x11 Y N Y 1 Branch Event Captured

BR_MISPRED_DETAIL 0x5b Y N Y 3 FE Branch Mispredict Detail

BR_MISPRED_DETAIL2 0x68 Y N Y 2 FE Branch Mispredict Detail
(Unknown path component)

BR_PATH_PRED 0x54 Y N Y 3 FE Branch Path Prediction Detail

BR_PATH_PRED2 0x6a Y N Y 2 FE Branch Path Prediction Detail
(Unknown prediction component)

ENCBR_MISPRED_DETAIL 0x63 Y N Y 1 Number of encoded branches retired
11-6 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
Figure 11-1. Event Monitors in the Itanium® 2 Processor Memory Hierarchy

BUS

L3

L3_MISSES

L3_READ_REFERENCES(d)L3_WRITE_REFERENCES(d)

L3_REFERENCES

L3_STORE_REFERENCES(d) L3_INST_REFERENCES(d)L2_WB_REFERENCES(d)

L3_DATA_READ_REFERENCES(d)

L2

L2_MISSES

L2_REFERENCES

 (d) = derived counter

L2_DATA_REFERENCES L2_INST_REFERENCES(d)

L2_INST_DEMAND_READS
L2_INST_PREFETCHES

L1IL1D

L1D_READ_MISSES

Processor Pipeline

DATA_REFERENCES
L1I_READSL1I_PREFETCHES

ITLB

L1DTLB

L2DTLB

VHPT Walker

ISB
(write through)

L1DTLB_MISSES

L2DTLB_MISSES
ITLB_INSERTS_HPW

DTLB_INSERTS_HPW

L1I_FILLS

ITLB_MISSES_FETCH

Store Buffer

ISB_BUNPAIRS_IN
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-7

Performance Monitor Events
11.8.1 L1 Instruction Cache and Prefetch Events

Table 11-8 describes and summarizes the events that the Itanium 2 processor provides to monitor
L1 instruction cache demand fetch and prefetch activity. The instruction fetch monitors distinguish
between demand fetch, L1I_READS, and prefetch activity, L1I_PREFETCHES. The amount of
data returned from the L2 to the L1 instruction cache and the Instruction Streaming Buffer is
monitored by two events, L1I_FILLS and ISB_LINES_IN. The L1I_EAR_EVENTS monitor
counts how many instruction cache or L1ITLB misses are captured by the instruction event address
register.

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in
the processor pipeline, they include events caused by speculative, wrong-path instructions as well
as predicated-off instructions. Since the address range check is based on speculative instruction
addresses rather than retired instruction addresses, event counts may be inaccurate when the range
checker is confined to address ranges smaller than the length of the processor pipeline (see
Section 10.3.5, “Instruction Address Range Matching” for details).

L1I_EAR_EVENTS counts the number of events captured by the Itanium 2 processor’s instruction
EARs. Please refer to Section 10.3.7, “Event Address Registers (PMC10,11/PMD0,1,2,3,17)” for
more detailed information about the instruction EARs.

Table 11-8. Performance Monitors for L1 Instruction Cache and Prefetch Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

ISB_BUNPAIRS_IN 0x46 Y N N 1 Bundle pairs written from L2 into FE

L1I_EAR_EVENTS 0x43 Y N N 1 Instruction EAR Events

L1I_FETCH_ISB_HIT 0x66 Y N N 1 “Just-in-time” instruction fetch hitting
in and being bypassed from ISB

L1I_FETCH_RAB_HIT 0x65 Y N N 1 Instruction fetch hitting in RAB

L1I_FILLS 0x41 Y N N 1 L1 Instruction Cache Fills

L1I_PREFETCHES 0x44 Y N N 1 L1 Instruction Prefetch Requests

L2_INST_DEMAND_READS 0x42 Y N N 1 L1 Instruction Cache and ISB Misses

L1I_PREFETCH_STALL 0x67 N N N 1 Why prefetch pipeline is stalled?

L1I_PURGE 0x4b Y N N 1 L1ITLB purges handled by L1I

L1I_PVAB_OVERFLOW 0x69 N N N 1 PVAB overflow

L1I_RAB_ALMOST_FULL 0x64 N N N 1 Is RAB almost full?

L1I_RAB_FULL 0x60 N N N 1 Is RAB full?

L1I_READS 0x40 Y N N 1 L1 Instruction Cache Reads

L1I_SNOOP 0x4a Y Y Y 1 Snoop requests handled by L1I

L1I_STRM_PREFETCHES 0x5f Y N N 1 L1 Instruction Cache line prefetch
requests

L2_INST_PREFETCHES 0x45 Y N N 1 L2 Instruction Prefetch Requests
11-8 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
11.8.2 L1 Data Cache Events

Table 11-10 lists the Itanium 2 processor’s L1 data cache monitors. As shown in Figure 11-1, the
write-through L1 data cache services cacheable loads, integer and RSE loads, check loads and
hinted L2 memory references. DATA_REFERENCES is the number of issued data memory
references.

L1 data cache reads (L1D_READS) and L1 data cache misses (L1D_READ_MISSES) monitor the
read hit/miss rate of the L1 data cache. RSE operations are included in all data cache monitors, but
are not broken down explicitly. The DATA_EAR_EVENTS monitor counts how many data cache
or DTLB misses are captured by the data event address register. Please refer to Section 10.3.8,
“Data EAR (PMC11, PMD2,3,17)” for more detailed information about the data EARs.

L1D cache events have been divided into five sets. Events from different sets of L1D Cache events
cannot be measured at the same time. Each set is selected by the event code programmed into
PMC5 (i.e. if you want to measure any of the events in this set, one of them needs to be measured
by PMD5). There are no limitations on umasks. Monitors belonging to each set are explicitly
presented in the following sections.

Table 11-9. Derived Monitors for L1 Instruction Cache and Prefetch Events

Symbol Name Description Equation

ISB_LINES_IN Number of cache lines written
from L2 (and beyond) into the
front-end

ISB_BUNPAIRS_IN/4

L1I_DEMAND_MISS_RATIO L1I Demand Miss Ratio L2_INST_DEMAND_READS /
L1I_READS

L1I_PREFETCH_MISS_RATIO L1I Prefetch Miss Ratio L2_INST_PREFETCHES /
L1I_PREFETCHES

L1I_REFERENCES Number of L1 Instruction Cache
reads and fills

L1I_READS + L1I_PREFETCHES

Table 11-10. Performance Monitors for L1 Data Cache Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DATA_EAR_EVENTS 0xc8 Y Y Y 1 L1 Data Cache EAR Events

L1D_READS_SET0 0xc2 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET0 0xc3 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READS_SET1 0xc4 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READ_MISSES 0xc7 Y Y Y 2 L1 Data Cache Read Misses
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-9

Performance Monitor Events
11.8.2.1 L1D Cache Events (Set 0)

11.8.2.2 L1D Cache Events (Set 1)

11.8.2.3 L1D Cache Events (Set 2)

11.8.2.4 L1D Cache Events (Set 3)

Table 11-11. Performance Monitors for L1D Cache Set 0

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L1DTLB_TRANSFER 0xc0 Y Y Y 1 L1DTLB misses hit in L2DTLB for
access counted in L1D_READS

L2DTLB_MISSES 0xc1 Y Y Y 4 L2DTLB Misses

L1D_READS_SET0 0xc2 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET0 0xc3 Y Y Y 4 Data memory references issued to
memory pipeline

Table 11-12. Performance Monitors for L1D Cache Set 1

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L1D_READS_SET1 0xc4 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READ_MISSES 0xc7 Y Y Y 2 L1 Data Cache Read Misses

Table 11-13. Performance Monitors for L1D Cache Set 2

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BE_L1D_FPU_BUBBLE 0xca N N N 1 Full pipe bubbles in main pipe due to
FP or L1D cache

Table 11-14. Performance Monitors for L1D Cache Set 3

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

LOADS_RETIRED 0xcd Y Y Y 4 Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 Retired Misaligned Load Instructions

UC_LOADS_RETIRED 0xcf Y Y Y 4 Retired Uncacheable Loads
11-10 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
11.8.2.5 L1D Cache Events (Set 4)

11.8.3 L2 Unified Cache Events

Table 11-16 summarizes the events available to monitor the Itanium 2 processor L2 cache.

L2 cache events have been divided into 6 sets. Only events within a set (or non-L2 events) can be
measured at the same time. Each set is selected by the event code programmed into PMC4 (i.e. if
you want to measure any of the events in this set, one of them needs to be measured by PMD4).
Within a set, certain events can only be measured by PMD4. There may also be some limitations on
umasks in which the prime event (the L2 event using PMD4) will dictate the umask for certain
companion L2 events. These will be noted by set. Monitors belonging to each set are explicitly
presented in the following sections.

Table 11-15. Performance Monitors for L1D Cache Set 4

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 Retired Misaligned Store Instructions

STORES_RETIRED 0xd1 Y Y Y 2 Retired Stores

UC_STORES_RETIRED 0xd0 Y Y Y 2 Retired Uncacheable Stores

Table 11-16. Performance Monitors for L2 Unified Cache Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_BAD_LINES_SELECTED 0xb9 Y Y Y 4 Valid line replaced when invalid line is
available

L2_BYPASS 0xb8 Y Y Y 1 Count bypass

L2_DATA_REFERENCES 0xb2 Y Y Y 4 Data RD/WR access to L2

L2_FILLB_FULL 0xbf N N N 1 L2D Fill buffer is full

L2_FORCE_RECIRC 0xb4 Y Y Y 4 Forced recirculates

L2_GOT_RECIRC_IFETCH 0xba Y Y Y 1 Instruction fetch recirculates received
by L2D

L2_GOT_RECIRC_OZQ_ACC 0xb6 Y Y Y 1 Counts number of OZQ accesses
recirculated back to L1D

L2_IFET_CANCELS 0xa1,0
xa5,

0xa9,
0xad

Y Y Y 1 Instruction fetch cancels by the L2

L2_ISSUED_RECIRC_IFETCH 0xb9 Y Y Y 1 Instruction fetch recirculates issued
by L2D

L2_ISSUED_RECIRC_OZQ_ACC 0xb5 Y Y Y 1 Count the number of times a
recirculate issue was attempted and
not preempted

L2_L3ACCESS_CANCEL 0xb0 Y Y Y 1 Canceled L3 accesses

L2_MISSES 0xcb Y Y Y 1 L2 Misses

L2_OPS_ISSUED 0xb8 Y Y Y 4 Different operations issued by L2D

L2_OZDB_FULL 0xbd N N N 1 L2D OZ data buffer is full
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-11

Performance Monitor Events
A metric of interest is L2_MISS_RATIO; note that semaphores might cause this metric to be larger
than 100% due to the fact that a semaphore will be counted once in L2_REFERENCES but may
cause more than one L2_MISSES due to the cache line being snooped out and re-requested from
the bus. This can be repeated many times until forward progress continues. Some level of error
should be expected in this metric because L2_MISSES and L2_REFERENCES are lined up in time
only for 5 cycle bypasses. (One can get around this problem by using the mf.a instruction
followed by a sync.i followed by a srlz.i instruction before reading the counters).

L2_OZQ_ACQUIRE 0xa2,0
xa6,0x
aa,0xa

e

N N N 1 Clocks with acquire ordering attribute
existed in L2 OZQ

L2_OZQ_CANCELS0 0xa0 Y Y Y 4 L2 OZQ cancels

L2_OZQ_CANCELS1 0xac Y Y Y 4 L2 OZQ cancels

L2_OZQ_CANCELS2 0xa8 Y Y Y 4 L2 OZQ cancels

L2_OZQ_FULL 0xbc N N N 1 L2D OZQ is full

L2_OZQ_RELEASE 0xa3,0
xa7,0x
ab,0xaf

N N N 1 Clocks with release ordering attribute
existed in L2 OZQ

L2_REFERENCES 0xb1 Y Y Y 4 Requests made from L2

L2_STORE_HIT_SHARED 0xba Y Y Y 2 Store hit a shared line

L2_SYNTH_PROBE 0xb7 Y Y Y 1 Synthesize Probe

L2_VICTIMB_FULL 0xbe N N N 1 L2D victim buffer is full

Table 11-17. Derived Monitors for L2 Unified Cache Events

Symbol Name Description Equation

L2_DATA_RATIO Ratio of Data requests made to
L2

L2_DATA_REFERENCES.L2_ALL /
L2_REFERENCES

L2_DATA_READS L2 Data Read Requests L2_DATA_REFERENCES.L2_DATA_RE
ADS

L2_DATA_WRITES L2 Data Write Requests L2_DATA_REFERENCES.L2_DATA_W
RITES

L2_INST_REFERENCES Instruction requests made to L2 L2_INST_DEMAND_READS +
L2_INST_PREFETCHES

L2_INST_FETCHES Requests made to L2 due to
demand instruction fetches

L2_INST_DEMAND_READS +
L2_INST_PREFETCHES

L2_MISS_RATIO Percentage of L2 Misses L2_MISSES/L2_REFERENCES

L2_RECIRC_ATTEMPTS Number of times the L2 issue
logic attempted to issue a
recirculate.

L2_ISSUED_RECIRC_OZQ_ACC +
L2_OZQ_CANCELS2.DIDNT_RECIRC

Table 11-16. Performance Monitors for L2 Unified Cache Events (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
11-12 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
11.8.3.1 L2 Cache Events (Set 0)

Either one of the L2_OZQ_CANCELS* events or L2_IFET_CANCELS must be measured by
PMD4. These events use the same umask. Only 1 of the 3 L2_OZQ_CANCELS* events can be
measured at any one time.

11.8.3.2 L2 Cache Events (Set 1)

L2_L3ACCESS_CANCEL must be measured by PMD4.

11.8.3.3 L2 Cache Events (Set 2)

L2_FORCE_RECIRC must be measured by PMD4.

Table 11-18. Performance Monitors for L2 Cache Set 0

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_IFET_CANCELS 0xa1,0
xa5,0x
a9,0xa

d

Y Y Y 1 Instruction fetch cancels by the L2.

L2_OZQ_ACQUIRE 0xa2,0
xa6,0x
aa,0xa

e

N N N 1 Clocks with acquire ordering attribute
existed in L2 OZQ

L2_OZQ_CANCELS0 0xa0 Y Y Y 4 L2 OZQ cancels

L2_OZQ_CANCELS1 0xac Y Y Y 4 L2 OZQ cancels

L2_OZQ_CANCELS2 0xa8 Y Y Y 4 L2 OZQ cancels

L2_OZQ_RELEASE 0xa3,0
xa7,0x
ab,0xaf

N N N 1 Clocks with release ordering attribute
existed in L2 OZQ

Table 11-19. Performance Monitors for L2 Cache Set 1

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_DATA_REFERENCES 0xb2 Y Y Y 4 Data read/write access to L2

L2_L3ACCESS_CANCEL 0xb0 Y Y Y 1 Canceled L3 accesses

L2_REFERENCES 0xb1 Y Y Y 4 Requests made from L2

Table 11-20. Performance Monitors for L2 Cache Set 2

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_FORCE_RECIRC 0xb4 Y Y Y 4 Forced recirculates

L2_ISSUED_RECIRC_OZQ_ACC 0xb5 Y Y Y 1 Count number of times a recirculate
issue was attempted and not
preempted

L2_GOT_RECIRC_OZQ_ACC 0xb6 Y Y Y 1 Counts number of OZQ accesses
recirculated back to L1D

L2_SYNTH_PROBE 0xb7 Y Y Y 1 Synthesized probe
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-13

Performance Monitor Events
11.8.3.4 L2 Cache Events (Set 3)

L2_BAD_LINES_SELECTED, L2_BYPASS, and L2_STORE_HIT_SHARED share the same
umask.

11.8.3.5 L2 Cache Events (Set 4)

Either one of L2_OPS_ISSUED, L2_ISSUED_RECIRC_IFETCH, or
L2_GOT_RECIRC_IFETCH must be measured by PMD4. These three events share the same
umask.

11.8.3.6 L2 Cache Events (Set 5)

Either one of L2_OZQ_FULL, L2_OZDB_FULL, L2_VICTIMB_FULL, or L2_FILLB_FULL
must be measured by PMD4. These four events share the same umask.

Table 11-21. Performance Monitors for L2 Cache Set 3

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_BAD_LINES_SELECTED 0xb9 Y Y Y 4 Valid line replaced when invalid line is
available

L2_BYPASS 0xb8 Y Y Y 1 Count bypass

L2_STORE_HIT_SHARED 0xba Y Y Y 2 Store hit a shared line

Table 11-22. Performance Monitors for L2 Cache Set 4

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_GOT_RECIRC_IFETCH 0xba Y Y Y 1 Instruction fetch recirculates received
by L2D

L2_ISSUED_RECIRC_IFETCH 0xb9 Y Y Y 1 Instruction fetch recirculates issued
by L2D

L2_OPS_ISSUED 0xb8 Y Y Y 4 Different operations issued by L2D

Table 11-23. Performance Monitors for L2 Cache Set 5

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2_OZQ_FULL 0xbc N N N 1 L2D OZQ is full

L2_OZDB_FULL 0xbd N N N 1 L2D OZ data buffer is full

L2_VICTIMB_FULL 0xbe N N N 1 L2D victim buffer is full

L2_FILLB_FULL 0xbf N N N 1 L2D Fill buffer is full
11-14 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
11.8.4 L3 Cache Events

Table 11-24 summarizes the directly-measured L3 cache events. An extensive list of derived events
is provided in Table 11-25.

Table 11-24. Performance Monitors for L3 Unified Cache Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L3_LINES_REPLACED 0xdf N N N 1 L3 Cache Lines Replaced

L3_MISSES 0xdc Y Y Y 1 L3 Misses

L3_READS 0xdd Y Y Y 1 L3 Reads

L3_REFERENCES 0xdb Y Y Y 1 L3 References

L3_WRITES 0xde Y Y Y 1 L3 Writes

Table 11-25. Derived Monitors for L3 Unified Cache Events

Symbol Name Description Equation

L3_DATA_HITS L3 Data Read Hits L3_READS.DATA_READ.HIT

L3_DATA_MISS_RATIO L3 Data Miss Ratio (L3_READS.DATA_READ.MISS +
L3_WRITES.DATA_WRITE.MISS) /
(L3_READS.DATA_READ.ALL +
L3_WRITES.DATA_WRITE.ALL)

L3_DATA_READ_MISSES L3 Data Read Misses L3_READS.DATA_READ.MISS

L3_DATA_READ_RATIO Ratio of L3 References that are
Data Read References

L3_READS.DATA_READ.ALL /
L3_REFERENCES

L3_DATA_READ_REFEREN
CES

L3 Data Read References L3_READS.DATA_READ.ALL

L3_INST_HITS L3 Instruction Hits L3_READS.INST_FETCH.HIT

L3_INST_MISSES L3 Instruction Misses L3_READS.INST_FETCH.MISS

L3_INST_MISS_RATIO L3_READS.INST_FETCH.MISS /
L3_READS.INST_FETCH.ALL

L3_INST_RATIO Ratio of L3 References that are
Instruction References

L3_READS.INST_FETCH.ALL /
L3_REFERENCES

L3_INST_REFERENCES L3 Instruction References L3_READS.INST_FETCH.ALL

L3_MISS_RATIO Percentage Of L3 Misses L3_MISSES/L3_REFERENCES

L3_READ_HITS L3 Read Hits L3_READS.READS.HIT

L3_READ_MISSES L3 Read Misses L3_READS.READS.MISS

L3_READ_REFERENCES L3 Read References L3_READS.READS.ALL

L3_STORE_HITS L3 Store Hits L3_WRITES.DATA_WRITE.HIT

L3_STORE_MISSES L3 Store Misses L3_WRITES.DATA_WRITE.MISS

L3_STORE_REFERENCES L3 Store References L3_WRITES.DATA_WRITE.ALL

L2_WB_HITS L2 Writeback Hits L3_WRITES.L2_WB.HIT

L2_WB_MISSES L2 Writeback Misses L3_WRITES.L2_WB.MISS

L2_WB_REFERENCES L2 Writeback References L3_WRITES.L2_WB.ALL

L3_WRITE_HITS L3 Write Hits L3_WRITES.ALL.HIT
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-15

Performance Monitor Events
11.9 System Events

The debug register match events count how often the address of any instruction or data breakpoint
register (IBR or DBR) matches the current retired instruction pointer
(CODE_DEBUG_REGISTER_MATCHES) or the current data memory address
(DATA_DEBUG_REGISTER_MATCHES). CPU_CPL_CHANGES counts the number of
privilege level transitions due to interruptions, system calls (epc), returns (demoting branch), and
rfi instructions.

11.10 TLB Events

The Itanium 2 processor instruction and data TLBs and the VHPT walker are monitored by the
events described in Table 11-28

L1ITLB_REFERENCES and L1DTLB_REFERENCES are derived from the respective
instruction/data cache access events. Note that ITLB_REFERENCES does not include prefetch
requests made to the L1I cache (L1I_PREFETCH_READS). This is because prefetches are
cancelled when they miss in the ITLB and thus do not trigger VHPT walks or software TLB miss
handling. ITLB_MISSES_FETCH and L2DTLB_MISSES count TLB misses.
ITLB_INSERTS_HPW and DTLB_INSERTS_HPW count the number of instruction/data TLB
inserts performed by the VHPT walker.

L3_WRITE_MISSES L3 Write Misses L3_WRITES.ALL.MISS

L3_WRITE_REFERENCES L3 Write References L3_WRITES.ALL.ALL

Table 11-25. Derived Monitors for L3 Unified Cache Events (Continued)

Symbol Name Description Equation

Table 11-26. Performance Monitors for System Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

CPU_CPL_CHANGES 0x13 N N N 1 Privilege Level Changes

DATA_DEBUG_REGISTER_FAULT 0x52 N N N 1 Fault due to data debug reg. Match to
load/store instruction

DATA_DEBUG_REGISTER_MATCH
ES

0xc6 Y Y Y 1 Data debug register matches data
address of memory reference

EXTERN_DP_PINS_0_TO_3 0x9e N N N 1 DP pins 0-3 asserted

EXTERN_DP_PINS_4_TO_5 0x9f N N N 1 DP pins 4-5 asserted

SERIALIZATION_EVENTS 0x53 N N N 1 Number of srlz.I instructions

Table 11-27. Derived Monitors for System Events

Symbol Name Description Equation

CODE_DEBUG_REGISTER_
MATCHES

Code Debug Register Matches IA64_TAGGED_INST_RETIRED
11-16 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
The Itanium 2 processor has 2 data TLBs called L1DTLB and L2DTLB (also referred to as DTLB
or L2 DTLB). These TLBs are in parallel and the L2DTLB is the larger and slower of the two.The
possible actions for the combination of hits and misses in these TLBs are outlined below:

• L1DTLB_hit=0, L2DTLB_hit=0: If enabled, HPW kicks in and inserts a translation into one
or both TLBs.

• L1DTLB_hit=0, L2DTLB_hit=1: If floating-point, no action is taken; else a transfer is made
from L2DTLB to L1DTLB.

• L1DTLB_hit=1, L2DTLB_hit=0: If enabled, HPW kicks in and inserts a translation into one
or both TLBs.

• L1DTLB_hit=1, L2DTLB_hit=1: No action is taken.

Table 11-28. Performance Monitors for TLB Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DTLB_INSERTS_HPW 0xc9 Y Y Y 4 Hardware Page Walker Installs to
DTLB

DTLB_INSERTS_HPW_RETIRED 0x2c Y Y Y 4 VHPT entries inserted into DTLB by
the Hardware Page Walker

HPW_DATA_REFERENCES 0x2d Y Y Y 4 Data memory references to VHPT

L2DTLB_MISSES 0xc1 Y Y Y 4 L2DTLB Misses

L1ITLB_INSERTS_HPW 0x48 Y N N 1 L1ITLB Hardware Page Walker
Inserts

ITLB_MISSES_FETCH 0x47 Y N N 1 ITLB Misses Demand Fetch

L1DTLB_TRANSFER 0xc0 Y Y Y 1 L1DTLB misses that hit in the
L2DTLB for accesses counted in
L1D_READS

Table 11-29. Derived Monitors for TLB Events

Symbol Name Description Equation

L1DTLB_EAR_EVENTS Counts the number of L1DTLB
events captured by the EAR

DATA_EAR_EVENTS

L2DTLB_MISS_RATIO L2DTLB miss ratio L2DTLB_MISSES /
DATA_REFERENCES_SET0 or
L2DTLB_MISSES /
DATA_REFERENCES_SET1

L1DTLB_REFERENCES L1DTLB References DATA_REFERENCES_SET0 or
DATA_REFERENCES_SET1

L1ITLB_EAR_EVENTS Provides information on the
number of L1ITLB events
captured by the EAR. This is a
subset of L1I_EAR_EVENTS

L1I_EAR_EVENTS

L1ITLB_MISS_RATIO L1ITLB miss ratio ITLB_MISSES_FETCH.L1ITLB /
L1I_READS

L1ITLB_REFERENCES L1ITLB References L1I_READS

L1DTLB_FOR_L1D_MISS_R
ATIO

Miss Ratio of L1DTLB servicing
the L1D

L1DTLB_TRANSFER /
L1D_READS_SET0 or
L1DTLB_TRANSFER /
L1D_READS_SET1
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-17

Performance Monitor Events
When a memory operation goes down the memory pipeline, DATA_REFERENCES will count it.
If the translation does not exist in the L2DTLB, then L2DTLB_MISSES will count it. If the HPW
is enabled, then HPW_DATA_REFERENCES will count it. If the HPW finds the data in VHPT, it
will insert it in the L1DTLB and L2DTLB (as needed). If the translation exists in the L2DTLB, the
only case that some work is done is when translation does not exist in the L1DTLB. If the operation
is serviced by the L1D (see L1D_READS description), L1DTLB_TRANSFER will count it. For
the purpose of calculating the TLB miss ratios, VHPT memory references have been excluded from
the DATA_REFERENCES event and provided VHPT_REFERENCES for the situations where one
might want to add them in.

Due to the TLB hardware design, there are some corner cases, where some of these events will
show activity even though the instruction causing the activity never reaches retirement (they are
marked so). Since the processor is stalled even for these corner cases, they are included in the
counts and as long as all events that are used for calculating a metric are consistent with respect to
this issue, fairly accurate numbers are expected.

11.11 System Bus Events

Table 11-30 lists the system bus transaction monitors. Many of the listed bus events take a umask
that qualifies the event by initiator. For all bus events, when “per cycles” is mentioned, CPU clock
cycles are inferred rather than bus clock cycles unless otherwise specified. Numerous derived
events have been included in Table 11-31.

Table 11-30. Performance Monitors for System Bus Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BUS_ALL 0x87 N N N 1 Bus Transactions

BUS_BRQ_LIVE_REQ_HI 0x9c N N N 2 BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)

BUS_BRQ_LIVE_REQ_LO 0x9b N N N 7 BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)

BUS_BRQ_REQ_INSERTED 0x9d N N N 1 BRQ Requests Inserted

BUS_DATA_CYCLE 0x88 N N N 1 Valid data cycle on the Bus

BUS_HITM 0x84 N N N 1 Bus Hit Modified Line Transactions

BUS_IO 0x90 N N N 1 IA-32 Compatible IO Bus
Transactions

BUS_IOQ_LIVE_REQ_HI 0x98 N N N 2 In-order Bus Queue Requests (two
most-significant-bit of the 4-bit
outstanding IOQ request count)

BUS_IOQ_LIVE_REQ_LO 0x97 N N N 3 In-order Bus Queue Requests (two
least-significant-bit of the 4-bit
outstanding IOQ request count)

BUS_LOCK 0x93 N N N 1 IA-32 Compatible Bus Lock
Transactions

BUS_BACKSNP_REQ 0x8e N N N 1 Bus Back Snoop Requests

BUS_MEMORY 0x8a N N N 1 Bus Memory Transactions

BUS_MEM_READ 0x8b N N N 1 Full Cache line D/I memory RD, RD
invalidate, and BRIL
11-18 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_MEM_READ_OUT_HI 0x94 N N N 2 Outstanding memory RD transactions

BUS_MEM_READ_OUT_LO 0x95 N N N 7 Outstanding memory RD transactions

BUS_OOQ_LIVE_REQ_HI 0x9a N N N 2 Out-of-order Bus Queue Requests
(two most-significant-bit of the 4-bit
outstanding OOQ request count)

BUS_OOQ_LIVE_REQ_LO 0x99 N N N 7 Out-of-order Bus Queue Requests
(three least-significant-bit of the 4-bit
outstanding OOQ request count)

BUS_RD_DATA 0x8c N N N 1 Bus Read Data Transactions

BUS_RD_HIT 0x80 N N N 1 Bus Read Hit Clean Non-local Cache
Transactions

BUS_RD_HITM 0x81 N N N 1 Bus Read Hit Modified Non-local
Cache Transactions

BUS_RD_INVAL_ALL_HITM 0x83 N N N 1 Bus BRIL Burst Transaction Results
in HITM

BUS_RD_INVAL_HITM 0x82 N N N 1 Bus BIL Transaction Results in HITM

BUS_RD_IO 0x91 N N N 1 IA-32 Compatible IO Read
Transactions

BUS_RD_PRTL 0x8d N N N 1 Bus Read Partial Transactions

BUS_SNOOPQ_REQ 0x96 N N N 7 Bus Snoop Queue Requests

BUS_SNOOPS 0x86 N N N 1 Bus Snoops Total

BUS_SNOOPS_HITM 0x85 N N N 1 Bus Snoops HIT Modified Cache Line

BUS_SNOOP_STALL_CYCLES 0x8f N N N 1 Bus Snoop Stall Cycles (from any
agent)

BUS_WR_WB 0x92 N N N 1 Bus Write Back Transactions

MEM_READ_CURRENT 0x89 N N N 1 Current Mem Read Transactions On
Bus

Table 11-31. Derived Monitors for System Bus Events

Symbol Name Description Equation

BIL_HITM_LINE_RATIO BIL Hit to Modified Line Ratio BUS_RD_INVAL_HITM /
BUS_MEMORY or
BUS_RD_INVAL_HITM /
BUS_RD_INVAL

BIL_RATIO BIL Ratio BUS_RD_INVAL / BUS_MEMORY

BRIL_HITM_LINE_RATIO BRIL Hit to Modified Line Ratio BUS_RD_INVAL_BST_HITM /
BUS_MEMORY or
BUS_RD_INVAL_BST_HITM /
BUS_RD_INVAL

BUS_ADDR_BPRI Bus transactions used by IO
agent.

BUS_MEMORY.*.IO

BUS_BRQ_LIVE_REQ BRQ Live Requests BUS_BRQ_LIVE_REQ_HI * 8 +
BUS_BRQ_LIVE_REQ_LO

Table 11-30. Performance Monitors for System Bus Events (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-19

Performance Monitor Events
Table 11-32 defines the conventions that will be used when describing the Itanium 2 processor
system bus transaction monitors in this section as well as the individual monitor descriptions in
Section 11.14, “Performance Monitor Event List”.

BUS_BURST Full cache line memory
transactions (BRL, BRIL, BWL)

BUS_MEMORY.EQ_128BYTE.*

BUS_HITM_RATIO Bus Modified Line Hit Ratio BUS_HITM / BUS_MEMORY or
BUS_HITM / BUS_BURST

BUS_HITS_RATIO Bus Read Hit to Shared Line
Ratio

BUS_RD_HIT / BUS_RD_ALL or
BUS_RD_HIT / BUS_MEMORY

BUS_IOQ_LIVE_REQ Inorder Bus Queue Requests BUS_IOQ_LIVE_REQ_HI * 4 +
BUS_IOQ_LIVE_REQ_LO

BUS_IO_CYCLE_RATIO Bus I/O Cycle Ratio BUS_IO / BUS_ALL

BUS_IO_RD_RATIO Bus I/O Read Ratio BUS_RD_IO / BUS_IO

BUS_MEM_READ_OUTSTA
NDING

Number of outstanding memory
RD transactions

BUS_MEM_READ_OUT_HI * 8 +
BUS_MEM_READ_OUT_LO

BUS_OOQ_LIVE_REQ Out-of-order Bus Queue
Requests

BUS_OOQ_LIVE_REQ_HI * 8 +
BUS_OOQ_LIVE_REQ_LO

BUS_PARTIAL Less than cache line memory
transactions (BRP, BWP)

BUS_MEMORY.LT_128BYTE.*

BUS_PARTIAL_RATIO Bus Partial Access Ratio BUS_MEMORY.LT_128BYTE /
BUS_MEMORY

BUS_RD_ALL Full cache line memory read
transactions (BRL)

BUS_MEM_READ.BRL.*

BUS_RD_DATA_RATIO Cacheable Data Fetch Bus
Transaction Ratio

BUS_RD_DATA / BUS_ALL or
BUS_RD_DATA / BUS_MEMORY

BUS_RD_HITM_RATIO Bus Read Hit to Modified Line
Ratio

BUS_RD_HITM / BUS_RD_ALL or
BUS_RD_HITM / BUS_MEMORY

BUS_RD_INSTRUCTIONS Full cache line instruction
memory read transactions (BRP)

BUS_RD_ALL - BUS_RD_DATA

BUS_RD_INVAL 0 byte memory read-invalidate
transactions (BIL)

BUS_MEM_READ.BIL.*

BUS_RD_INVAL_BST Full cache line read-invalidate
transactions (BRIL)

BUS_MEM_READ.BRIL.*

BUS_RD_INVAL_BST_MEM
ORY

Bus Read Invalid Line in Burst
transactions (BRIL) satisfied by
memory

BUS_RD_INVAL_BST -
BUS_RD_INVAL_BST_HITM

BUS_RD_INVAL_MEMORY Bus Read Invalidate Line
transactions (BIL) satisfied from
memory

BUS_RD_INVAL -
BUS_RD_INVAL_HITM

BUS_RD_INVAL_BST_HITM Bus Read Invalidate Line in Burst
transactions (BRIL) resulting in
HITMs

BUS_RD_INVAL_ALL_HITM -
BUS_RD_INVAL_HITM

BUS_RD_PRTL_RATIO Bus Read Partial Access Ratio BUS_RD_PRTL / BUS_MEMORY

BUS_WB_RATIO Writeback Ratio BUS_WR_WB / BUS_MEMORY or
BUS_WR_WB / BUS_BURST

CACHEABLE_READ_RATIO Cacheable Read Ratio (BUS_RD_ALL +
BUS_MEM_READ.BRIL) /
BUS_MEMORY

Table 11-31. Derived Monitors for System Bus Events (Continued)

Symbol Name Description Equation
11-20 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
Other transactions besides those listed in Table 11-32 include Deferred Reply, Special
Transactions, Interrupt, Interrupt Acknowledge, and Purge TC. Note that the monitors will count if
any transaction gets a retry response from the priority agent.

To support the analysis of snoop traffic in a multiprocessor system, the Itanium 2 processor
provides local processor and remote response monitors. The local processor snoop events
(BUS_SNOOPS_HITM, BUS_SNOOPS and BUS_SNOOPQ_REQ) monitor inbound snoop
traffic. The remote response events (BUS_RD_HIT, BUS_RD_HITM, BUS_RD_INVAL_HITM
and BUS_RD_INVAL_ALL_HITM) monitor the snoop responses of other processors to bus
transactions that the monitoring processor originated. Table 11-33 summarizes the remote snoop
events by bus transaction.

11.12 RSE Events

Register Stack Engine events are presented in Table 11-34. The number of current/dirty registers
are split among three monitors since there are 96 physical registers in the Itanium 2 processor.

Table 11-32. Conventions for System Bus Transactions

Name Description

BRC Memory Read Current (128 byte transactions). Reads without changing state.

BRL Memory Read (64 byte bursts). Includes code fetches and data loads from WB memory.

BRIL Memory Read & Invalidate (64 byte bursts). Also known as read for ownership (RFO).

BIL Memory Read & Invalidate (0 byte sized transaction). Caused by flush cache (fc) instruction only.

BWL Memory Write (64 byte bursts). Explicit writebacks/coalesced writes.

BRP Partial Memory Reads (<64 byte transactions). Typically, uncacheable reads.

BWP Partial Memory Write (<64 byte transactions). Typically, uncacheable writes.

IORD Partial IO Read (<64 byte transactions). Uncacheable read to IO port space.

IOWR Partial IO Write (<64 byte transactions). Uncacheable write to IO port space.

Table 11-33. Bus Events by Snoop Response

Remote Processor
Response BRL BIL BRIL

HIT BUS_RD_HIT n/a n/a

HITM BUS_RD_HITM BUS_RD_INVAL_HITM BUS_RD_INVAL_BST_HITM

ALL BUS_RD_ALL BUS_RD_INVAL BUS_RD_INVAL

Table 11-34. Performance Monitors for RSE Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

RSE_CURRENT_REGS_2_TO_0 0x2b N N N 7 Current RSE registers

RSE_CURRENT_REGS_5_TO_3 0x2a N N N 7 Current RSE registers

RSE_CURRENT_REGS_6 0x26 N N N 1 Current RSE registers

RSE_DIRTY_REGS_2_TO_0 0x29 N N N 7 Dirty RSE registers
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-21

Performance Monitor Events
11.13 Performance Monitors Ordered by Event Code

Table 11-36 presents all of the performance monitors provided in the Itanium 2 processor ordered
by their event code.

RSE_DIRTY_REGS_5_TO_3 0x28 N N N 7 Dirty RSE registers

RSE_DIRTY_REGS_6 0x24 N N N 1 Dirty RSE registers

RSE_EVENT_RETIRED 0x32 N N N 1 Retired RSE operations

RSE_REFERENCES_RETIRED 0x20 Y Y Y 2 RSE Accesses

Table 11-35. Derived Monitors for RSE Events

Symbol Name Description Equation

RSE_CURRENT_REGS Current RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_CURRENT_REGS_6 * 64 +
RSE_CURRENT_REGS_5_TO_3 * 8 +
RSE_CURRENT_REGS_2_TO_0

RSE_DIRTY_REGS Dirty RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_DIRTY_REGS_6 * 64 +
RSE_DIRTY_REGS_5_TO_3 * 8 +
RSE_DIRTY_REGS_2_TO_0

RSE_LOAD_LATENCY_PEN
ALTY

Counts the number of cycles we
have stalled due to retired RSE
loads. (Every time RSE.BOF
reaches RSE.storereg and RSE
has not issued all of the loads
necessary for the fill.)

BE_RSE_BUBBLE.UNDERFLOW

RSE_AVG_LOAD_LATENCY Average latency for RSE loads RSE_LOAD_LATENCY_PENALTY /
RSE_REFERENCES_RETIRED.LOAD

RSE_AVG_CURRENT_REGS Average number of current
registers

RSE_CURRENT_REGS /
RSE_EVENT_RETIRED

RSE_AVG_DIRTY_REGS Average number of dirty registers RSE_DIRTY_REGS /
RSE_EVENT_RETIRED

RSE_AVG_INVALID_REGS Average number of invalid
registers. Assumes number of
clean registers is always 0.

96 - (RSE_DIRTY_REGS +
RSE_CURRENT_REGS) /
RSE_EVENT_RETIRED

Table 11-34. Performance Monitors for RSE Events (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

Table 11-36. All Performance Monitors Ordered by Code

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BACK_END_BUBBLE 0x00 N N N 1 Full pipe bubbles in main pipe

BE_RSE_BUBBLE 0x01 N N N 1 Full pipe bubbles in main pipe due to
RSE stalls

BE_EXE_BUBBLE 0x02 N N N 1 Full pipe bubbles in main pipe due to
Execution unit stalls

FP_TRUE_SIRSTALL 0x03 Y N N 1 SIR stall asserted and leads to a trap
11-22 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BE_FLUSH_BUBBLE 0x04 N N N 1 Full pipe bubbles in main pipe due to
flushes

FP_FALSE_SIRSTALL 0x05 Y N N 1 SIR stall without a trap

FP_FAILED_FCHKF 0x06 Y N N 1 Failed fchkf

IA32_ISA_TRANSITIONS 0x07 N N N 1 Itanium to/from IA-32 ISA Transitions

IA64_INST_RETIRED 0x08 Y N Y 6 Retired Itanium Instructions

IA64_TAGGED_INST_RETIRED 0x08 Y N Y 6 Retired Tagged Instructions

FP_OPS_RETIRED 0x09 Y N N 4 Retired FP operations

FP_FLUSH_TO_ZERO 0x0b Y N N 2 FP Result Flushed to Zero

BRANCH_EVENT 0x11 Y N Y 1 Branch Event Captured

CPU_CYCLES 0x12 N N N 1 CPU Cycles

CPU_CPL_CHANGES 0x13 N N N 1 Privilege Level Changes

RSE_REFERENCES_RETIRED 0x20 Y Y Y 2 RSE Accesses

RSE_DIRTY_REGS_6 0x24 N N N 1 Dirty RSE registers

RSE_CURRENT_REGS_6 0x26 N N N 1 Current RSE registers

RSE_DIRTY_REGS_5_TO_3 0x28 N N N 7 Dirty RSE registers

RSE_DIRTY_REGS_2_TO_0 0x29 N N N 7 Dirty RSE registers

RSE_CURRENT_REGS_5_TO_3 0x2a N N N 7 Current RSE registers

RSE_CURRENT_REGS_2_TO_0 0x2b N N N 7 Current RSE registers

DTLB_INSERTS_HPW_RETIRED 0x2c Y Y Y 4 VHPT entries inserted into DTLB by
HW PW

HPW_DATA_REFERENCES 0x2d Y Y Y 4 Data memory references to VHPT

RSE_EVENT_RETIRED 0x32 N N N 1 Retired RSE operations

L1I_READS 0x40 Y N N 1 L1 Instruction Cache Reads

L1I_FILLS 0x41 Y N N 1 L1 Instruction Cache Fills

L2_INST_DEMAND_READS 0x42 Y N N 1 L1 Instruction Cache and ISB Misses

L1I_EAR_EVENTS 0x43 Y N N 1 Instruction EAR Events

L1I_PREFETCHES 0x44 Y N N 1 L1 Instruction Prefetch Requests

L2_INST_PREFETCHES 0x45 Y N N 1 L2 Instruction Prefetch Requests

ISB_BUNPAIRS_IN 0x46 Y N N 1 Bundle pairs written from L2 into FE

ITLB_MISSES_FETCH 0x47 Y N N 1 ITLB Misses Demand Fetch

L1ITLB_INSERTS_HPW 0x48 Y N N 1 L1ITLB Hardware Page Walker
Inserts

DISP_STALLED 0x49 N N N 1 Number of cycles dispersal stalled

L1I_SNOOP 0x4a Y Y Y 1 Snoop requests handled by L1I

L1I_PURGE 0x4b Y N N 1 L1ITLB purges handled by L1I

INST_DISPERSED 0x4d Y N N 6 Syllables Dispersed from REN to
REG stage

SYLL_NOT_DISPERSED 0x4e Y N N 5 Syllables not dispersed

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-23

Performance Monitor Events
SYLL_OVERCOUNT 0x4f Y N N 2 Syllables overcounted

NOPS_RETIRED 0x50 Y N Y 6 Retired NOP Instructions

PREDICATE_SQUASHED_RETIRED 0x51 Y N Y 6 Instructions Squashed Due to
Predicate Off

DATA_DEBUG_REGISTER_FAULT 0x52 N N N 1 Fault due to data debug reg. Match to
load/store instruction

SERIALIZATION_EVENTS 0x53 N N N 1 Number of srlz.I instructions

BR_PATH_PRED 0x54 Y N Y 3 FE Branch Path Prediction Detail

INST_FAILED_CHKS_RETIRED 0x55 N N N 1 Failed Speculative Check Loads

INST_CHKA_LDC_ALAT 0x56 Y Y Y 2 Advanced Check Loads

INST_FAILED_CHKA_LDC_ALAT 0x57 Y Y Y 1 Failed Advanced Check Loads

ALAT_CAPACITY_MISS 0x58 Y Y Y 2 ALAT Entry Replaced

IA32_INST_RETIRED 0x59 N N N 2 IA-32 Instructions Retired

BR_MISPRED_DETAIL 0x5b Y N Y 3 FE Branch Mispredict Detail

L1I_STRM_PREFETCHES 0x5f Y N N 1 L1 Instruction Cache line prefetch
requests

L1I_RAB_FULL 0x60 N N N 1 Is RAB full?

BE_BR_MISPRED_DETAIL 0x61 Y N Y 1 BE branch misprediction detail

ENCBR_MISPRED_DETAIL 0x63 Y N Y 1 Number of encoded branches retired

L1I_RAB_ALMOST_FULL 0x64 N N N 1 Is RAB almost full?

L1I_FETCH_RAB_HIT 0x65 Y N N 1 Instruction fetch hitting in RAB

L1I_FETCH_ISB_HIT 0x66 Y N N 1 “Just-in-time” instruction fetch hitting
in and being bypassed from ISB

L1I_PREFETCH_STALL 0x67 N N N 1 Why prefetch pipeline is stalled?

BR_MISPRED_DETAIL2 0x68 Y N Y 2 FE Branch Mispredict Detail
(Unknown path component)

L1I_PVAB_OVERFLOW 0x69 N N N 1 PVAB overflow

BR_PATH_PRED2 0x6a Y N Y 2 FE Branch Path Prediction Detail
(Unknown prediction component)

FE_LOST_BW 0x70 N N N 2 Invalid bundles at the entrance to IB

FE_BUBBLE 0x71 N N N 1 Bubbles seen by FE

BE_LOST_BW_DUE_TO_FE 0x72 N N N 2 Invalid bundles if BE not stalled for
other reasons

IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 N N N 2 Invalid bundles at the exit from IB

BUS_RD_HIT 0x80 N N N 1 Bus Read Hit Clean Non-local Cache
Transactions

BUS_RD_HITM 0x81 N N N 1 Bus Read Hit Modified Non-local
Cache Transactions

BUS_RD_INVAL_HITM 0x82 N N N 1 Bus BIL Transaction Results in HITM

BUS_RD_INVAL_ALL_HITM 0x83 N N N 1 Bus BIL or BRIL Transaction Results
in HITM

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
11-24 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_HITM 0x84 N N N 1 Bus Hit Modified Line Transactions

BUS_SNOOPS_HITM 0x85 N N N 1 Bus Snoops HIT Modified Cache Line

BUS_SNOOPS 0x86 N N N 1 Bus Snoops Total

BUS_ALL 0x87 N N N 1 Bus Transactions

BUS_DATA_CYCLE 0x88 N N N 1 Valid data cycle on the Bus

MEM_READ_CURRENT 0x89 N N N 1 Current Mem Read Transactions On
Bus

BUS_MEMORY 0x8a N N N 1 Bus Memory Transactions

BUS_MEM_READ 0x8b N N N 1 Full Cache line D/I memory RD, RD
invalidate, and BRIL

BUS_RD_DATA 0x8c N N N 1 Bus Read Data Transactions

BUS_RD_PRTL 0x8d N N N 1 Bus Read Partial Transactions

BUS_BACKSNP_REQ 0x8e N N N 1 Bus Back Snoop Requests

BUS_SNOOP_STALL_CYCLES 0x8f N N N 1 Bus Snoop Stall Cycles (from any
agent)

BUS_IO 0x90 N N N 1 IA-32 Compatible IO Bus
Transactions

BUS_RD_IO 0x91 N N N 1 IA-32 Compatible IO Read
Transactions

BUS_WR_WB 0x92 N N N 1 Bus Write Back Transactions

BUS_LOCK 0x93 N N N 1 IA-32 Compatible Bus Lock
Transactions

BUS_MEM_READ_OUT_HI 0x94 N N N 2 Outstanding memory RD transactions

BUS_MEM_READ_OUT_LO 0x95 N N N 7 Outstanding memory RD transactions

BUS_SNOOPQ_REQ 0x96 N N N 7 Bus Snoop Queue Requests

BUS_IOQ_LIVE_REQ_LO 0x97 N N N 3 Inorder Bus Queue Requests (two
least-significant-bit of the 4-bit
outstanding IOQ request count)

BUS_IOQ_LIVE_REQ_HI 0x98 N N N 2 Inorder Bus Queue Requests (two
most-significant-bit of the 4-bit
outstanding IOQ request count)

BUS_OOQ_LIVE_REQ_LO 0x99 N N N 7 Out-of-order Bus Queue Requests
(three least-significant-bit of the 4-bit
outstanding OOQ request count)

BUS_OOQ_LIVE_REQ_HI 0x9a N N N 2 Out-of-order Bus Queue Requests
(two most-significant-bit of the 4-bit
outstanding OOQ request count)

BUS_BRQ_LIVE_REQ_LO 0x9b N N N 7 BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)

BUS_BRQ_LIVE_REQ_HI 0x9c N N N 2 BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)

BUS_BRQ_REQ_INSERTED 0x9d N N N 1 BRQ Requests Inserted

EXTERN_DP_PINS_0_TO_3 0x9e N N N 1 DP pins 0-3 asserted

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-25

Performance Monitor Events
EXTERN_DP_PINS_4_TO_5 0x9f N N N 1 DP pins 4-5 asserted

L2_OZQ_CANCELS0 0xa0 Y Y Y 4 L2 OZQ cancels

L2_IFET_CANCELS 0xa1,0
xa5,0x
a9,0xa

d

Y Y Y 1 Instruction fetch cancels by the L2.

L2_OZQ_ACQUIRE 0xa2,0
xa6,0x
aa,0xa

e

N N N 1 Clocks with acquire ordering attribute
existed in L2 OZQ

L2_OZQ_RELEASE 0xa3,0
xa7,0x
ab,0xaf

N N N 1 Clocks with release ordering attribute
existed in L2 OZQ

L2_OZQ_CANCELS2 0xa8 Y Y Y 4 L2 OZQ cancels

L2_OZQ_CANCELS1 0xac Y Y Y 4 L2 OZQ cancels

L2_L3ACCESS_CANCEL 0xb0 Y Y Y 1 Canceled L3 accesses

L2_REFERENCES 0xb1 Y Y Y 4 Requests made from L2

L2_DATA_REFERENCES 0xb2 Y Y Y 4 Data read/write access to L2

L2_FORCE_RECIRC 0xb4 Y Y Y 4 Forced recirculates

L2_ISSUED_RECIRC_OZQ_ACC 0xb5 Y Y Y 1 Count number of times a recirculate
issue was attempted and not
preempted

L2_GOT_RECIRC_OZQ_ACC 0xb6 Y Y Y 1 Counts number of OZQ accesses
recirculated back to L1D

L2_SYNTH_PROBE 0xb7 Y Y Y 1 Synthesized Probe

L2_BYPASS 0xb8 Y Y Y 1 Count bypass

L2_OPS_ISSUED 0xb8 Y Y Y 4 Different operations issued by L2D

L2_ISSUED_RECIRC_IFETCH 0xb9 Y Y Y 1 Instruction fetch recirculates issued
by L2D

L2_BAD_LINES_SELECTED 0xb9 Y Y Y 4 Valid line replaced when invalid line is
available

L2_GOT_RECIRC_IFETCH 0xba Y Y Y 1 Instruction fetch recirculates received
by L2D

L2_STORE_HIT_SHARED 0xba Y Y Y 2 Store hit a shared line

TAGGED_L2_DATA_RETURN_POR
T

0xbb Y Y Y 1 Tagged L2 Data Return Ports 0/1

L2_OZQ_FULL 0xbc N N N 1 L2D OZQ is full

L2_OZDB_FULL 0xbd N N N 1 L2D OZ data buffer is full

L2_VICTIMB_FULL 0xbe N N N 1 L2D victim buffer is full

L2_FILLB_FULL 0xbf N N N 1 L2D Fill buffer is full

L1DTLB_TRANSFER 0xc0 Y Y Y 1 L1DTLB misses that hit in the
L2DTLB for accesses counted in
L1D_READS

L2DTLB_MISSES 0xc1 Y Y Y 4 L2DTLB Misses

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
11-26 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L1D_READS_SET0 0xc2 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET0 0xc3 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READS_SET1 0xc4 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 Data memory references issued to
memory pipeline

DATA_DEBUG_REGISTER_MATCH
ES

0xc6 Y Y Y 1 Data debug register matches data
address of memory reference

L1D_READ_MISSES 0xc7 Y Y Y 2 L1 Data Cache Read Misses

DATA_EAR_EVENTS 0xc8 Y Y Y 1 L1 Data Cache EAR Events

DTLB_INSERTS_HPW 0xc9 Y Y Y 4 Hardware Page Walker Installs to
DTLB

BE_L1D_FPU_BUBBLE 0xca N N N 1 Full pipe bubbles in main pipe due to
FP or L1 dcache

L2_MISSES 0xcb Y Y Y 1 L2 Misses

LOADS_RETIRED 0xcd Y Y Y 4 Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 Retired Misaligned Load Instructions

UC_LOADS_RETIRED 0xcf Y Y Y 4 Retired Uncacheable Loads

UC_STORES_RETIRED 0xd0 Y Y Y 2 Retired Uncacheable Stores

STORES_RETIRED 0xd1 Y Y Y 2 Retired Stores

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 Retired Misaligned Store Instructions

L3_REFERENCES 0xdb Y Y Y 1 L3 References

L3_MISSES 0xdc Y Y Y 1 L3 Misses

L3_READS 0xdd Y Y Y 1 L3 Reads

L3_WRITES 0xde Y Y Y 1 L3 Writes

L3_LINES_REPLACED 0xdf N N N 1 L3 Cache Lines Replaced

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-27

Performance Monitor Events
11.14 Performance Monitor Event List

This section enumerates Itanium 2 processor performance monitoring events.

Note: Events that can be constrained by an Instruction Address Range can only be constrained by IBRP0
unless otherwise noted.

ALAT_CAPACITY_MISS

• Title: ALAT Entry Replaced

• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x58, 0D[��,QF�&\F��2

• Definition: Provides information on the number of times an advanced load (ld.a, ld.as,
ldfp.a or ldfp.as) or missing ld.c.nc displaced a valid entry in the ALAT which did not
have the same register id or replaced the last one to two invalid entries.

BACK_END_BUBBLE

• Title: Full Pipe Bubbles in Main Pipe

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x00, 0D[��,QF�&\F��1

• Definition: Counts the number of full-pipe bubbles in the main pipe stalled due to any of 5
possible events (FPU/L1D, RSE, EXE, branch/exception or the front-end). One event unit mask
further constrains this event and allows for some details in order to facilitate collecting all
information with four counters.

Table 11-37. Unit Masks for ALAT_CAPACITY_MISS

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

INT bxx01 Only integer instructions

FP bxx10 Only floating-point instructions

ALL bxx11 Both integer and floating-point instructions

Table 11-38. Unit Masks for BACK_END_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bxx00 Front-end, RSE, EXE, FPU/L1D stall or a pipeline flush due
to an exception/branch misprediction

FE bxx01 Front-end

L1D_FPU_RSE bxx10

— bxx11 (* nothing will be counted *)
11-28 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BE_BR_MISPRED_DETAIL

• Title: Back-end Branch Misprediction Detail

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x61, 0D[��,QF�&\F��1

• Definition: Counts the number of branches retired based on the prediction result, Back-end
mispredictions of stg, rot, or pfs. These predictions are per bundle rather than per branch.

• NOTE: These events are counted only if there are no path mispredictions associated with
branches because path misprediction guarantees stg/rot/pfs misprediction.

BE_EXE_BUBBLE

• Title: Full Pipe Bubbles in Main Pipe due to Execution Unit Stalls

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x02, 0D[��,QF�&\F��1

• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the
Execution Unit.

• NOTE: The different causes for this event are not prioritized because there is no need to do so
(causes are independent and several of them fire at the same time, they all should be counted).

Table 11-39. Unit Masks for BE_BR_MISPREDICT_DETAIL

Extension PMC.umask
[19:16] Description

ANY bxx00 Any back-end mispredictions

STG bxx01 Only back-end stage mispredictions

ROT bxx10 Only back-end rotate mispredictions

PFS bxx11 Only back-end pfs mispredictions for taken branches

Table 11-40. Unit Masks for BE_EXE_BUBBLE

Extension PMC.umask
[19:16] Description

ALL b0000 Was stalled by exe

GRALL b0001 Back-end was stalled by exe due to GR/GR or GR/load
dependency

FRALL b0010 Back-end was stalled by exe due to FR/FR or FR/load
dependency

PR b0011 Back-end was stalled by exe due to PR dependency

ARCR b0100 Back-end was stalled by exe due to AR or CR dependency

GRGR b0101 Back-end was stalled by exe due to GR/GR dependency

CANCEL b0110 Back-end was stalled by exe due to a canceled load

BANK_SWITCH b0111 Back-end was stalled by exe due to bank switching.

ARCR_PR_CANCEL_BANK b1000 ARCR, PR, CANCEL or BANK_SWITCH

— b1001-b1111 (* nothing will be counted *)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-29

Performance Monitor Events
BE_FLUSH_BUBBLE

• Title: Full Pipe Bubbles in Main Pipe due to Flushes.

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x04, 0D[��,QF�&\F��1

• Definition: Counts the number of full-pipe bubbles in the main pipe due to flushes.

• NOTE: XPN is higher priority than BRU.

BE_L1D_FPU_BUBBLE

• Title: Full Pipe Bubbles in Main Pipe due to FP or L1D Cache

• Category: Stall Events/L1D Cache Set 2 IAR/DAR/OPC: N/N/N

• Event Code: 0xca, 0D[��,QF�&\F��1

• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by
either floating-point unit or L1D cache.

• NOTE: This is a restricted set 2 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. The different causes for this event are not
prioritized because there is no need to do so (causes are independent and several of them fire at
the same time, they all should be counted).

Table 11-41. Unit Masks for BE_FLUSH_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bxx00 Back-end was stalled due to either an exception/interruption
or branch misprediction flush

BRU bxx01 Back-end was stalled due to a branch misprediction flush

XPN bxx10 Back-end was stalled due to an exception/interruption flush

--- bxx11 (* nothing will be counted *)

Table 11-42. Unit Masks for BE_L1D_FPU_BUBBLE

Extension PMC.umask
[19:16] Description

ALL b0000 Back-end was stalled by L1D or FPU

FPU b0001 Back-end was stalled by FPU.

L1D b0010 Back-end was stalled by L1D. This includes all stalls caused
by the L1 pipeline (created in the L1D stage of the L1
pipeline which corresponds to the DET stage of the main
pipe).

L1D_FULLSTBUF b0011 Back-end was stalled by L1D due to store buffer being full

L1D_DCURECIR b0100 Back-end was stalled by L1D due to DCU recirculating

L1D_HPW b0101 Back-end was stalled by L1D due to Hardware Page Walker

— b0110 (* count is undefined *)

L1D_FILLCONF b0111 Back-end was stalled by L1D due a store in conflict with a
returning fill.

L1D_DCS b1000 Back-end was stalled by L1D due to dcs requiring a stall

L1D_L2BPRESS b1001 Back-end was stalled by L1D due to L2 Back Pressure
11-30 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BE_LOST_BW_DUE_TO_FE

• Title: Invalid Bundles if BE Not Stalled for Other Reasons.

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x72, 0D[��,QF�&\F��2

• Definition: Counts the number of invalid bundles at the exit from Instruction Buffer only if
Back-end is not stalled for other reasons.

• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for
this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC,
BUBBLE, IBFULL, UNREACHED. The prioritization implies that when several stall
conditions exist at the same time, only the highest priority one will be counted. There are two
cases where a bundle is considered “unreachable”. When bundle 0 contains a taken branch or
bundle 0 is invalid but has IP[4] set to 1, bundle 1 will not be reached.

L1D_TLB b1010 Back-end was stalled by L1D due to L2DTLB to L1DTLB
transfer

L1D_LDCONF b1011 Back-end was stalled by L1D due to architectural ordering
conflict

L1D_LDCHK b1100 Back-end was stalled by L1D due to load check ordering
conflict.

L1D_NAT b1101 Back-end was stalled by L1D due to L1D data return
needing recirculated NaT generation.

L1D_STBUFRECIR b1110 Back-end was stalled by L1D due to store buffer cancel
needing recirculate.

L1D_NATCONF b1111 Back-end was stalled by L1D due to ld8.fill conflict with
st8.spill not written to unat.

Table 11-42. Unit Masks for BE_L1D_FPU_BUBBLE (Continued)

Extension PMC.umask
[19:16] Description

Table 11-43. Unit Masks for BE_LOST_BW_DUE_TO_FE

Extension PMC.umask
[19:16] Description

ALL b0000 Count regardless of cause

FEFLUSH b0001 Only if caused by a front-end flush

— b0010 (* count is undefined *)

— b0011 (* illegal selection *)

UNREACHED b0100 Only if caused by unreachable bundle

IBFULL b0101 (* meaningless for this event *)

IMISS b0110 Only if caused by instruction cache miss stall

TLBMISS b0111 Only if caused by TLB stall

FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation

BI b1001 Only if caused by branch initialization stall

BRQ b1010 Only if caused by branch retirement queue stall

PLP b1011 Only if caused by perfect loop prediction stall

BR_ILOCK b1100 Only if caused by branch interlock stall
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-31

Performance Monitor Events
BE_RSE_BUBBLE

• Title: Full Pipe Bubbles in Main Pipe due to RSE Stalls

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x01, 0D[��,QF�&\F��1

• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the
Register Stack Engine.

• NOTE: AR_DEP has a higher priority than OVERFLOW, UNDERFLOW and LOADRS.
However, this is the only prioritization implemented. In order to count OVERFLOW,
UNDERFLOW or LOADRS, AR_DEP must be false.

BRANCH_EVENT

• Title: Branch Event Captured

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x11, 0D[��,QF�&\F��1

• Definition: Counts the number of branch bundles retired which match the constraints of
PMC12 (defined under “Performance Monitor Control Registers”).

BUBBLE b1101 Only if caused by branch resteer bubble stall

— b1110-b1111 (* illegal selection *)

Table 11-43. Unit Masks for BE_LOST_BW_DUE_TO_FE (Continued)

Extension PMC.umask
[19:16] Description

Table 11-44. Unit Masks for BE_RSE_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bx000 Back-end was stalled by RSE

BANK_SWITCH bx001 Back-end was stalled by RSE due to bank switching

AR_DEP bx010 Back-end was stalled by RSE due to AR dependencies

OVERFLOW bx011 Back-end was stalled by RSE due to need to spill

UNDERFLOW bx100 Back-end was stalled by RSE due to need to fill

LOADRS bx101 Back-end was stalled by RSE due to loadrs calculations

— bx110-bx111 (* nothing will be counted *)
11-32 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BR_MISPRED_DETAIL

• Title: FE Branch Mispredict Detail

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x5b, 0D[��,QF�&\F��3

• Definition: Counts the number of branches retired. All 16 values for PMC.umask are valid in
order to provide information based on prediction result (mispredicted path or target address by
front-end), and branch type.

Table 11-45. Unit Masks for BR_MISPRED_DETAIL

Extension PMC.umask
[19:16] Description

ALL.ALL_PRED b0000 All branch types, regardless of prediction result

ALL.CORRECT_PRED b0001 All branch types, correctly predicted branches (outcome and
target)

ALL.WRONG_PATH b0010 All branch types, mispredicted branches due to wrong
branch direction

ALL.WRONG_TARGET b0011 All branch types, mispredicted branches due to wrong target
for taken branches

IPREL.ALL_PRED b0100 Only IP relative branches, regardless of prediction result

IPREL.CORRECT_PRED b0101 Only IP relative branches, correctly predicted branches
(outcome and target)

IPREL.WRONG_PATH b0110 Only IP relative branches, mispredicted branches due to
wrong branch direction

IPREL.WRONG_TARGET b0111 Only IP relative branches, mispredicted branches due to
wrong target for taken branches

RETURN.ALL_PRED b1000 Only return type branches, regardless of prediction result

RETURN.CORRECT_PRED b1001 Only return type branches, correctly predicted branches
(outcome and target)

RETURN.WRONG_PATH b1010 Only return type branches, mispredicted branches due to
wrong branch direction

RETURN.WRONG_TARGET b1011 Only return type branches, mispredicted branches due to
wrong target for taken branches

NRETIND.ALL_PRED b1100 Only non-return indirect branches, regardless of prediction
result

NRETIND.CORRECT_PRED b1101 Only non-return indirect branches, correctly predicted
branches (outcome and target)

NRETIND.WRONG_PATH b1110 Only non-return indirect branches, mispredicted branches
due to wrong branch direction

NRETIND.WRONG_TARGET b1111 Only non-return indirect branches, mispredicted branches
due to wrong target for taken branches
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-33

Performance Monitor Events
BR_MISPRED_DETAIL2

• Title: FE Branch Mispredict Detail (Unknown Path Component)

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x68, 0D[��,QF�&\F��2

• Definition: This event goes with BR_MISPRED_DETAIL event based on prediction result and
branch type

• NOTE: For accurate misprediction counts the following measurement must be taken:

BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL2.[umask]

By performing this calculation for every umask, one can obtain a true value for the
BR_MISPRED_DETAIL event.

Table 11-46. Unit Masks for BR_MISPREDICT_DETAIL2

Extension PMC.umask
[19:16] Description

ALL.ALL_UNKNOWN_PRED b0000 All branch types, branches with unknown path prediction

ALL.UNKNOWN_PATH_
CORRECT_PRED

b0001 All branch types, branches with unknown path prediction
and correctly predicted branch (outcome & target)

ALL.UNKNOWN_PATH_
WRONG_PATH

b0010 All branch types, branches with unknown path prediction
and wrong branch direction

— b0011 (* nothing will be counted *)

IPREL.ALL_UNKNOWN_
PRED

b0100 Only IP relative branches, branches with unknown path
prediction

IPREL.UNKNOWN_PATH_
CORRECT_PRED

b0101 Only IP relative branches, branches with unknown path
prediction and correctly predicted branch (outcome & target)

IPREL.UNKNOWN_PATH_
WRONG_PATH

b0110 Only IP relative branches, branches with unknown path
prediction and wrong branch direction

— b0111 (* nothing will be counted *)

RETURN.ALL_UNKNOWN_
PRED

b1000 Only return type branches, branches with unknown path
prediction

RETURN.UNKNOWN_PATH_
CORRECT_PRED

b1001 Only return type branches, branches with unknown path
prediction and correctly predicted branch (outcome & target)

RETURN.UNKNOWN_PATH_
WRONG_PATH

b1010 Only return type branches, branches with unknown path
prediction and wrong branch direction

— b1011 (* nothing will be counted *)

NRETIND.ALL_UNKNOWN_
PRED

b1100 Only non-return indirect branches, branches with unknown
path prediction

NRETIND.UNKNOWN_PATH
_CORRECT_PRED

b1101 Only non-return indirect branches, branches with unknown
path prediction and correctly predicted branch (outcome &
target)

NRETIND.UNKNOWN_PATH
_WRONG_PATH

b1110 Only non-return indirect branches, branches with unknown
path prediction and wrong branch direction

— b1111 (* nothing will be counted *)
11-34 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BR_PATH_PRED

• Title: FE Branch Path Prediction Detail

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x54, 0D[��,QF�&\F��3

• Definition: Counts the number of branches retired based on branch direction (taken/not taken),
branch predication and branch type. All 16 values for PMC.umask are valid.

Table 11-47. Unit Masks for BR_PATH_PRED

Extension PMC.umask
[19:16] Description

ALL.MISPRED_NOTTAKEN b0000 All branch types, incorrectly predicted path and not taken
branch

ALL.MISPRED_TAKEN b0001 All branch types, incorrectly predicted path and taken
branch

ALL.OKPRED_NOTTAKEN b0010 All branch types, correctly predicted path and not taken
branch

ALL.OKPRED_TAKEN b0011 All branch types, correctly predicted path and taken branch

IPREL.MISPRED_
NOTTAKEN

b0100 Only IP relative branches, incorrectly predicted path and not
taken branch

IPREL.MISPRED_TAKEN b0101 Only IP relative branches, incorrectly predicted path and
taken branch

IPREL.OKPRED_NOTTAKEN b0110 Only IP relative branches, correctly predicted path and not
taken branch

IPREL.OKPRED_TAKEN b0111 Only IP relative branches, correctly predicted path and
taken branch

RETURN.MISPRED_
NOTTAKEN

b1000 Only return type branches, incorrectly predicted path and
not taken branch

RETURN.MISPRED_TAKEN b1001 Only return type branches, incorrectly predicted path and
taken branch

RETURN.OKPRED_
NOTTAKEN

b1010 Only return type branches, correctly predicted path and not
taken branch

RETURN.OKPRED_TAKEN b1011 Only return type branches, correctly predicted path and
taken branch

NRETIND.MISPRED_
NOTTAKEN

b1100 Only non-return indirect branches, incorrectly predicted path
and not taken branch

NRETIND.MISPRED_TAKEN b1101 Only non-return indirect branches, incorrectly predicted path
and taken branch

NRETIND.OKPRED_
NOTTAKEN

b1110 Only non-return indirect branches, correctly predicted path
and not taken branch

NRETIND.OKPRED_TAKEN b1111 Only non-return indirect branches, correctly predicted path
and taken branch
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-35

Performance Monitor Events
BR_PATH_PRED2

• Title: FE Branch Path Prediction Detail (Unknown Pred Component)

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x6a, 0D[��,QF�&\F��2

• Definition: This event goes with BR_PATH_PREDICTION event.

• NOTE: When there is more than one branch in a bundle and one is predicted as taken, all the
higher number ports are forced to a predicted not taken mode without actually knowing the their
true prediction.

The true OKPRED_NOTTAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type].OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type].UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) specified for both events.

Similarly, the true MISPRED_TAKEN predicted path information can be obtained by
calculating:

BR_PATH_PRED.[branch type].MISPRED_TAKEN - BR_PATH_PRED2.[branch
type].UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

BUS_ALL

• Title: Bus Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x87, 0D[��,QF�&\F��1

• Definition: Counts the number of bus transactions.

Table 11-48. Unit Masks for BR_PATH_PRED2

Extension PMC.umask
[19:16] Description

ALL.UNKNOWNPRED_NOT
TAKEN

b00x0 All branch types, unknown predicted path and not taken
branch (which impacts OKPRED_NOTTAKEN)

ALL.UNKNOWNPRED_
TAKEN

b00x1 All branch types, unknown predicted path and taken branch
(which impacts MISPRED_TAKEN)

IPREL.UNKNOWNPRED_
NOTTAKEN

b01x0 Only IP relative branches, unknown predicted path and not
taken branch (which impacts OKPRED_NOTTAKEN)

IPREL.UNKNOWNPRED_
TAKEN

b01x1 Only IP relative branches, unknown predicted path and
taken branch (which impacts MISPRED_TAKEN)

RETURN.UNKNOWNPRED_
NOTTAKEN

b10x0 Only return type branches, unknown predicted path and not
taken branch (which impacts OKPRED_NOTTAKEN)

RETURN.UNKNOWNPRED_
TAKEN

b10x1 Only return type branches, unknown predicted path and
taken branch (which impacts MISPRED_TAKEN)

NRETIND.UNKNOWNPRED_
NOTTAKEN

b11x0 Only non-return indirect branches, unknown predicted path
and not taken branch (which impacts
OKPRED_NOTTAKEN)

NRETIND.UNKNOWNPRED_
TAKEN

b11x1 Only non-return indirect branches, unknown predicted path
and taken branch (which impacts MISPRED_TAKEN)
11-36 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_BACKSNP_REQ

• Title: Bus Back Snoop Requests

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8e, 0D[��,QF�&\F��1

• Definition: Counts the number of bus back snoop me requests accepted by the bus unit.

BUS_BRQ_LIVE_REQ_HI

• Title: BRQ Live Requests (upper two bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x9c, 0D[��,QF�&\F��2

• Definition: Counts the number of live read requests in BRQ. The Itanium 2 processor can have
a total of 16 per cycle. The upper 2 bits are stored in this counter (bits 4:3).

• NOTE: If a read request has a victim, it is also entered in the BRQ (as writeback). This event
will count 1 as long as a read or its victim is in BRQ (net effect is that due to a victim, the life of
read in BRQ is extended).

BUS_BRQ_LIVE_REQ_LO

• Title: BRQ Live Requests (lower three bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x9b, 0D[��,QF�&\F��7

• Definition: Counts the number of live read requests in BRQ. The Itanium 2 processor can have
a total of 16 per cycle. The lower 3 bits are stored in this counter (bits 2:0).

• NOTE: If a read request has a victim, it is also entered in the BRQ (as writeback). This event
will count 1 as long as a read or its victim is in BRQ (net effect is that due to a victim, the life of
read in BRQ is extended).

Table 11-49. Unit Masks for BUS_ALL

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).

Table 11-50. Unit Masks for BUS_BACKSNP_REQ

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

THIS bxx01 Counts the number of bus back snoop me requests

— bxx10 (* nothing will be counted *)

— bxx11 (* nothing will be counted *)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-37

Performance Monitor Events
BUS_BRQ_REQ_INSERTED

• Title: BRQ Requests Inserted

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x9d, 0D[��,QF�&\F��1

• Definition: Counts the number of requests which are inserted into BRQ.

• NOTE: Entries made into BRQ due to L2 victims (caused by read, fc, cc) are not counted.

BUS_DATA_CYCLE

• Title: Valid Data Cycle on the Bus

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x88, 0D[��,QF�&\F��1

• Definition: Counts the number of BUS Clocks which had a valid data cycle on the bus.

BUS_HITM

• Title: Bus Hit Modified Line Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x84, 0D[��,QF�&\F��1

• Definition: Counts the number of transactions with HITM asserted (i.e. transaction was
satisfied by some other processor’s modified line).

• NOTE: This is equivalent to: BUS_RD_INVAL_ALL_HITM + BUS_RD_HITM.

BUS_IO

• Title: IA-32 Compatible IO Bus Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x90, 0D[��,QF�&\F��1

• Definition: Counts the number of IA-32 I/O transactions.

BUS_IOQ_LIVE_REQ_HI

• Title: Inorder Bus Queue Requests (upper two bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x98, 0D[��,QF�&\F��2

• Definition: Counts the number of live in-order bus requests. The Itanium 2 processor can have
a total of 8 per cycle. The upper two bits are stored in this counter.

Table 11-51. Unit Masks for BUS_IO

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).
11-38 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_IOQ_LIVE_REQ_LO

• Title: Inorder Bus Queue Requests (lower two bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x97, 0D[��,QF�&\F��3

• Definition: Counts the number of live in-order bus requests. The Itanium 2 processor can have
a total of 8 per cycle. The lower two bits are stored in this counter.

BUS_LOCK

• Title: IA-32 Compatible Bus Lock Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x93, 0D[��,QF�&\F��1

• Definition: Counts the number of IA-32 bus lock transactions.

BUS_MEMORY

• Title: Bus Memory Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8a, 0D[��,QF�&\F��1

• Definition: Counts the number of bus memory transactions (i.e memory-read-invalidate,
reserved-memory-read, memory-read, and memory-write transactions).

Table 11-52. Unit Masks for BUS_LOCK

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

— bxx01 (* illegal selection *)

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).

Table 11-53. Unit Masks for BUS_MEMORY

Extension PMC.umask
[19:16] Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

EQ_128BYTE.IO b0101 Number of full cache line transactions (BRL, BRIL, BWL)
from non-CPU priority agents

EQ_128BYTE.SELF b0110 Number of full cache line transactions (BRL, BRIL, BWL)
from local processor

EQ_128BYTE.ANY b0111 Number of full cache line transactions (BRL, BRIL, BWL)
from CPU or non-CPU (all transactions).

— b1000 (* nothing will be counted *)

LT_128BYTE.IO b1001 Number of less than full cache line transactions (BRP, BWP)
from non-CPU priority agents

LT_128BYTE.SELF b1010 Number of less than full cache line transactions (BRP, BWP)
local processor
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-39

Performance Monitor Events
BUS_MEM_READ

• Title: Full Cache Line D/I Memory RD, RD Invalidate, and BRIL

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8b, 0D[��,QF�&\F��1

• Definition: Counts the number of full cache-line (128-byte) data/code memory read (BRL),
full cache-line memory read-invalidate (BRIL), and 0-byte memory read-invalidate (BIL)
transactions.

LT_128BYTE.ANY b1011 Number of less than full cache line transactions (BRP, BWP)
CPU or non-CPU (all transactions).

— b1100 (* nothing will be counted *)

ALL.IO b1101 All bus transactions from non-CPU priority agents

ALL.SELF b1110 All bus transactions from local processor

ALL.ANY b1111 All bus transactions from CPU or non-CPU (all
transactions).

Table 11-53. Unit Masks for BUS_MEMORY (Continued)

Extension PMC.umask
[19:16] Description

Table 11-54. Unit Masks for BUS_MEM_READ

Extension PMC.umask
[19:16] Description

— b0000 (* nothing will be counted *)

BIL.IO b0001 Number of BIL 0-byte memory read invalidate transactions
from non-CPU priority agents

BIL.SELF b0010 Number of BIL 0-byte memory read invalidate transactions
from local processor

BIL.ANY b0011 Number of BIL 0-byte memory read invalidate transactions
from CPU or non-CPU (all transactions).

— b0100 (* nothing will be counted *)

BRL.IO b0101 Number of full cache line memory read transactions from
non-CPU priority agents

BRL.SELF b0110 Number of full cache line memory read transactions from
local processor

BRL.ANY b0111 Number of full cache line memory read transactions from
CPU or non-CPU (all transactions).

--- b1000 (* nothing will be counted *)

BRIL.IO b1001 Number of full cache line memory read invalidate
transactions from non-CPU priority agents

BRIL.SELF b1010 Number of full cache line memory read invalidate
transactions from local processor

BRIL.ANY b1011 Number of full cache line memory read invalidate
transactions from CPU or non-CPU (all transactions).

— b1100 (* nothing will be counted *)

ALL.IO b1101 All memory read transactions from non-CPU priority agents
11-40 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_MEM_READ_OUT_HI

• Title: Outstanding Memory Read Transactions (upper 2 bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x94, 0D[��,QF�&\F��2

• Definition: Counts the number of memory read transactions outstanding. The Itanium 2
processor can have a total of 16 of this event per cycle. The upper two bits are stored in this
counter. For the purpose of this event, a memory read access is assumed outstanding from the
time a read request is issued on the FSB until the first chunk of read data is returned to L2.

• NOTE: Uncacheables (or anything else which doesn’t access the L3) are not tracked. This is
intended to be used along with BUS_MEM_READ [all,self] for average system memory latency.

BUS_MEM_READ_OUT_LO

• Title: Outstanding Memory Read Transactions (lower 3 bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x95, 0D[��,QF�&\F��7

• Definition: Counts the number of memory read transactions outstanding. The Itanium 2
processor can have a total of 16 of this event per cycle. The lower three bits are stored in this
counter. For the purpose of this event, a memory read access is assumed outstanding from the
time a read request is issued on the FSB until the first chunk of read data is returned to L2.

• NOTE: Uncacheables (or anything else which doesn’t access the L3) are not tracked. This is
intended to be used along with BUS_MEM_READ [all,self] for average system memory latency.

BUS_OOQ_LIVE_REQ_HI

• Title: Out-of-order Bus Queue Requests (upper 2 bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x9a, 0D[��,QF�&\F��2

• Definition: Counts the number of live deferred (out-of-order) bus requests. The Itanium 2
processor can have a total of 18 of this event per cycle. The upper two bits are stored in this
counter (bits 4:3). This event increments every CPU clock cycle. The counter is incremented by
the number of live deferred transactions at that time.

• NOTE: BUS_OOO_LIVE_REQ/CPU_CYCLES event will be an indication of average
number of outstanding deferred transactions per CPU clock.

BUS_OOQ_LIVE_REQ_LO

• Title: Out-of-order Bus Queue Requests (lower 3 bits)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x99, 0D[��,QF�&\F��7

• Definition: Counts the number of live deferred (out-of-order) bus requests. The Itanium 2
processor can have a total of 18 of this event per cycle. The lower three bits are stored in this

ALL.SELF b1110 All memory read transactions from local processor

ALL.ANY b1111 All memory read transactions from CPU or non-CPU (all
transactions).

Table 11-54. Unit Masks for BUS_MEM_READ (Continued)

Extension PMC.umask
[19:16] Description
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-41

Performance Monitor Events
counter (bits 2:0). This event increments every CPU clock cycle. The counter is incremented by
the number of live deferred transactions at that time.

• NOTE: BUS_OOO_LIVE_REQ/CPU_CYCLES event will be an indication of average
number of outstanding deferred transactions per CPU clock.

BUS_RD_DATA

• Title: Bus Read Data Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8c, 0D[��,QF�&\F��1

• Definition: Counts the number of full-cache-line (128-byte) data memory read transactions
(BRL).

BUS_RD_HIT

• Title: Bus Read Hit Clean Non-local Cache Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x80, 0D[��,QF�&\F��1

• Definition: Counts the number of bus reads that hit a clean line in another processor’s cache
(implies HIT and BRL).

BUS_RD_HITM

• Title: Bus Read Hit Modified Non-local Cache Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x81, 0D[��,QF�&\F��1

• Definition: Counts the number of bus reads that hit a modified line in another processor’s cache
(implies HITM and BRL).

BUS_RD_INVAL_ALL_HITM

• Title: Bus BRIL and BIL Transaction Results in HITM

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x83, 0D[��,QF�&\F��1

• Definition: Counts the number of bus read invalidate line transactions (implies BRIL or BIL
and HITM) which are satisfied from a remote processor only.

Table 11-55. Unit Masks for BUS_RD_DATA

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).
11-42 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_RD_INVAL_HITM

• Title: Bus BIL Transaction Results in HITM

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x82, 0D[��,QF�&\F��1

• Definition: Counts the number of bus read invalidated line transactions for which HITM was
asserted (implies BIL and HITM) and the transaction was satisfied from another processor’s
cache.

BUS_RD_IO

• Title: IA-32 Compatible IO Read Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x91, 0D[��,QF�&\F��1

• Definition: Counts the number of IA-32 I/O read transactions.

BUS_RD_PRTL

• Title: Bus Read Partial Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8d, 0D[��,QF�&\F��1

• Definition: Counts the number of less-than-full-cache-line (0,8,16,32, and 64 byte) memory
read transactions (BRP).

Table 11-56. Unit Masks for BUS_RD_IO

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).

Table 11-57. Unit Masks for BUS_RD_PRTL

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-43

Performance Monitor Events
BUS_SNOOPQ_REQ

• Title: Bus Snoop Queue Requests

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x96, 0D[��,QF�&\F��7

• Definition: Counts the number of live snoop responses. This event increments every CPU
clock cycle. The amount that counter is incremented is the number of outstanding snoop
responses at that time.

BUS_SNOOPS

• Title: Bus Snoops Total

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x86, 0D[��,QF�&\F��1

• Definition: Counts the number of bus snoop requests on the bus.

BUS_SNOOPS_HITM

• Title: Bus Snoops HIT Modified Cache Line

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x85, 0D[��,QF�&\F��1

• Definition: Counts the number of bus snoop requests from remote processors that hit a
modified line in the local processor.

Table 11-58. Unit Masks for BUS_SNOOPS

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).

Table 11-59. Unit Masks for BUS_SNOOPS_HITM

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

— bxx01 (* illegal selection *)

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).
11-44 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
BUS_SNOOP_STALL_CYCLES

• Title: Bus Snoop Stall Cycles (from any agent)

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x8f, 0D[��,QF�&\F��1

• Definition: Counts the number of bus clocks FSB is stalled for snoop (this is twice the number
of bus clocks HIT and HITM are asserted at the same time).

BUS_WR_WB

• Title: Bus Write Back Transactions

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x92, 0D[��,QF�&\F��1

• Definition: Counts the number of write-back memory write transactions (BWL writes due to
M-state line write-backs and coalesced writes).

Table 11-60. Unit Masks for BUS_SNOOP_STALL_CYCLES

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

— bxx01 (* illegal selection *)

SELF bxx10 Local processor

ANY bxx11 CPU or non-CPU (all transactions).

Table 11-61. Unit Masks for BUS_WR_WB

Extension PMC.umask
[19:16] Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

EQ_128BYTE.IO b0101 Non-CPU priority agents/Only cache line transactions with
write back or write coalesce attributes will be counted.

EQ_128BYTE.SELF b0110 Local processor/Only cache line transactions with write back
or write coalesce attributes will be counted.

EQ_128BYTE.ANY b0111 CPU or non-CPU (all transactions)./Only cache line
transactions with write back or write coalesce attributes will
be counted.

— b1000 (* nothing will be counted *)

— b1001 (* illegal selection *)

CCASTOUT.SELF b1010 Local processor/Only 0-byte transactions with write back
attribute (clean cast outs) will be counted

CCASTOUT.ANY b1011 CPU or non-CPU (all transactions)/Only 0-byte transactions
with write back attribute (clean cast outs) will be counted

— b1100 (* nothing will be counted *)

ALL.IO b1101 Non-CPU priority agents

ALL.SELF b1110 Local processor

ALL.ANY b1111 CPU or non-CPU (all transactions).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-45

Performance Monitor Events
CPU_CPL_CHANGES

• Title: Privilege Level Changes

• Category: System Events IAR/DAR/OPC: N/N/N

• Event Code: 0x13, 0D[��,QF�&\F��1

• Definition: Counts the number of privilege level changes.

CPU_CYCLES

• Title: CPU Cycles

• Category: Basic Events IAR/DAR/OPC: N/N/N

• Event Code: 0x12, 0D[��,QF�&\F��1

• Definition: Counts the number of clock cycles.

DATA_DEBUG_REGISTER_FAULT

• Title: Fault Due to Data Debug Reg. Match to Load/Store Instruction

• Category: System Events IAR/DAR/OPC: N/N/N

• Event Code: 0x52, 0D[��,QF�&\F��1

• Definition: Counts the number of times we take a fault due to one of data debug registers
matching a load or store instruction.

DATA_DEBUG_REGISTER_MATCHES

• Title: Data Debug Register Matches Data Address of Memory References.

• Category: System Events IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc6, 0D[��,QF�&\F��1

• Definition: Counts the number of times the data debug register matches the data address of a
memory reference. This is the OR function the 4 DBR matches. Registers DBR0-7, PSR, DCR,
PMC13 affect this event. It does not include commits which means that it might have noise.

DATA_EAR_EVENTS

• Title: L1 Data Cache EAR Events

• Category: L1 Data Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc8, 0D[��,QF�&\F��1

• Definition: Counts the number of L1 Data Cache or L1DTLB or ALAT events captured by
EAR.

DATA_REFERENCES_SET0

• Title: Data Memory References Issued to Memory Pipeline

• Category: L1 Data Cache/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc3, 0D[��,QF�&\F��4

• Definition: Counts the number of data memory references issued into memory pipeline
(includes check loads, uncacheable accesses, RSE operations, semaphores, and floating-point
memory references). The count includes wrong path operations but excludes predicated off
operations. This event does not include VHPT memory references.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.
11-46 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
DATA_REFERENCES_SET1

• Title: Data Memory References Issued to Memory Pipeline

• Category: L1 Data Cache/L1D Cache Set 1 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc5, 0D[��,QF�&\F��4

• Definition: Counts the number of data memory references issued into memory pipeline
(includes check loads, uncacheable accesses, RSE operations, semaphores, and floating-point
memory references). The count includes wrong path operations but excludes predicated off
operations. This event does not include VHPT memory references.

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

DISP_STALLED

• Title: Number of Cycles Dispersal Stalled

• Category: Instruction Dispersal Events IAR/DAR/OPC: N/N/N

• Event Code: 0x49, 0D[��,QF�&\F��1

• Definition: Counts the number of cycles dispersal was stalled due to flushes or back-end
pipeline stalls.

DTLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts to DTLB

• Category: TLB IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc9, 0D[��,QF�&\F��4

• Definition: Counts the number of VHPT entries inserted into DTLB by Hardware Page Walker.

• NOTE: This will include misses which the DTLB did not squash even though the instructions
causing the miss did not get to retirement.

DTLB_INSERTS_HPW_RETIRED

• Title: VHPT Entries Inserted into DTLB by the Hardware Page Walker

• Category: TLB IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x2c, 0D[��,QF�&\F��4

• Definition: Counts the number of VHPT entries inserted into DTLB by Hardware Page Walker

• NOTE: This will not include misses which the DTLB did not squash even though the
instructions causing the miss did not get to retirement. The difference between this event and
DTLB_INSERTS_HPW is the amount of potentially unnecessary inserts into DTLB.

ENCBR_MISPRED_DETAIL

• Title: Number of Encoded Branches Retired

• Category: Branch Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x63, 0D[��,QF�&\F��3

• Definition: Counts the number of branches retired only if there is a branch on port B0 (i.e.
encoded branch).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-47

Performance Monitor Events
EXTERN_DP_PINS_0_TO_3

• Title: DP Pins 0-3 Asserted

• Category: System Events IAR/DAR/OPC: N/N/N

• Event Code: 0x9e, 0D[��,QF�&\F��1

• Definition: Counts the number of bus clocks external DP pins 0 through 3 were asserted.

Table 11-62. Unit Masks for ENCBR_MISPRED_DETAIL

Extension PMC.umask
[19:16] Description

ALL.ALL_PRED b0000 All encoded branches, regardless of prediction result

ALL.CORRECT_PRED b0001 All encoded branches, correctly predicted branches
(outcome and target)

ALL.WRONG_PATH b0010 All encoded branches, mispredicted branches due to wrong
branch direction

ALL.WRONG_TARGET b0011 All encoded branches, mispredicted branches due to wrong
target for taken branches

— b0100 (* nothing will be counted *)

— b0101 (* nothing will be counted *)

— b0110 (* nothing will be counted *)

— b0111 (* nothing will be counted *)

OVERSUB.ALL_PRED b1000 Only those which cause oversubscription, regardless of
prediction result

OVERSUB.CORRECT_
PRED

b1001 Only those which cause oversubscription, correctly
predicted branches (outcome and target)

OVERSUB.WRONG_PATH b1010 Only those which cause oversubscription, mispredicted
branches due to wrong branch direction

OVERSUB.WRONG_
ARGET

b1011 Only those which cause oversubscription mispredicted
branches due to wrong target for taken branches

ALL2.ALL_PRED b1100 All encoded branches, regardless of prediction result

ALL2.CORRECT_PRED b1101 All encoded branches, correctly predicted branches
(outcome and target)

ALL2.WRONG_PATH b1110 All encoded branches, mispredicted branches due to wrong
branch direction

ALL2.WRONG_TARGET b1111 All encoded branches, mispredicted branches due to wrong
target for taken branches

Table 11-63. Unit Masks for EXTERN_DP_PINS_0_TO_3

Extension PMC.umask
[19:16] Description

— b0000 (* nothing will be counted *)

PIN0 bxxx1 Include pin0 assertion

PIN1 bxx1x Include pin1 assertion

PIN2 bx1xx Include pin2 assertion

PIN3 b1xxx Include pin3 assertion
11-48 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
EXTERN_DP_PINS_4_TO_5

• Title: DP Pins 4-5 Asserted

• Category: System Events IAR/DAR/OPC: N/N/N

• Event Code: 0x9f, 0D[��,QF�&\F��1

• Definition: Counts the number of bus clocks external DP pins 4 and 5 were asserted.

FE_BUBBLE

• Title: Bubbles Seen by FE

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x71, 0D[��,QF�&\F��1

• Definition: Counts the number of bubbles seen by front-end. This event is another way of
looking at the FE_LOST_BW event.

• NOTE: Causes for stall are prioritized in the following order from high to low for this event:
FEFLUSH, TLBMISS, IMISS, BRANCH, FILL_RECIRC, BUBBLE, IBFULL. The
prioritization implies that when several stall conditions exist at the same time, only the highest
priority one will be counted.

Table 11-64. Unit Masks for EXTERN_DP_PINS_4_TO_5

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

PIN4 bxxx1 Include pin4 assertion

PIN5 bxx1x Include pin5 assertion

Table 11-65. Unit Masks for FE_BUBBLE

Extension PMC.umask
[19:16] Description

ALL b0000 Count regardless of cause

FEFLUSH b0001 Only if caused by a front-end flush

— b0010 (* count is undefined *)

GROUP1 b0011 BUBBLE or BRANCH

GROUP2 b0100 IMISS or TLBMISS

IBFULL b0101 Only if caused by instruction buffer full stall

IMISS b0110 Only if caused by instruction cache miss stall

TLBMISS b0111 Only if caused by TLB stall

FILL_RECIRC b1000 Only if caused by a recirculate for a fill operation

BRANCH b1001 Only if caused by any of 4 branch recirculates

GROUP3 b1010 FILL_RECIRC or BRANCH

ALLBUT_FEFLUSH_
BUBBLE

b1011 ALL except FEFLUSH and BUBBLE

ALLBUT_IBFULL b1100 ALL except IBFULL

BUBBLE b1101 Only if caused by branch bubble stall

— b1110-b1111 (* nothing will be counted *)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-49

Performance Monitor Events
FE_LOST_BW

• Title: Invalid Bundles at the Entrance to IB

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x70, 0D[��,QF�&\F��2

• Definition: Counts the number of invalid bundles at the entrance to Instruction Buffer.

• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for
this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC,
BUBBLE, IBFULL, UNREACHED. The prioritization implies that when several stall
conditions exist at the same time, only the highest priority one will be counted. There are two
cases where a bundle is considered “unreachable”. When bundle 0 contains a taken branch or
bundle 0 is invalid but has IP[4] set to 1, bundle 1 will not be reached.

FP_FAILED_FCHKF

• Title: Failed fchkf

• Category: Instruction Execution IAR/DAR/OPC: Y/N/N

• Event Code: 0x06, 0D[��,QF�&\F��1

• Definition: Counts the number of times the fchkf instruction failed.

FP_FALSE_SIRSTALL

• Title: SIR Stall Without a Trap

• Category: Instruction Execution IAR/DAR/OPC: Y/N/N

• Event Code: 0x05, 0D[��,QF�&\F��1

• Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and
does not lead to a trap.

Table 11-66. Unit Masks for FE_LOST_BW

Extension PMC.umask
[19:16] Description

ALL b0000 Count regardless of cause

FEFLUSH b0001 Only if caused by a front-end flush

— b0010 (* count is undefined *)

— b0011 (* illegal selection *)

UNREACHED b0100 Only if caused by unreachable bundle

IBFULL b0101 Only if caused by instruction buffer full stall

IMISS b0110 Only if caused by instruction cache miss stall

TLBMISS b0111 Only if caused by TLB stall

FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation

BI b1001 Only if caused by branch initialization stall

BRQ b1010 Only if caused by branch retirement queue stall

PLP b1011 Only if caused by perfect loop prediction stall

BR_ILOCK b1100 Only if caused by branch interlock stall

BUBBLE b1101 Only if caused by branch resteer bubble stall

— b1101-b1111 (* illegal selection *)
11-50 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
FP_FLUSH_TO_ZERO

• Title: FP Result Flushed to Zero

• Category: Instruction Execution IAR/DAR/OPC: Y/N/N

• Event Code: 0x0b, 0D[��,QF�&\F��2

• Definition: Counts the number of times a near zero result is flushed to zero in FTZ mode.

FP_OPS_RETIRED

• Title: Retired FP Operations

• Category: Instruction Execution IAR/DAR/OPC: Y/N/N

• Event Code: 0x09, 0D[��,QF�&\F��4

• Definition: Provides information on number of retired floating-point operations, excluding all
predicated off instructions. This is a weighted sum of basic floating-point operations. To count
how often specific opcodes are retired, use IA64_TAGGED_INST_RETIRED.

• NOTE: The following weights are used:

Counted as 4 ops: fpma, fpms, and fpnma

Counted as 2 ops: fpma, fpnma (f2=f0), fma, fms, fnma, fprcpa, fprsqrta,
fpmpy, fpmax, fpamin, fpamax, fpcmp, fpcvt

Counted as 1 op: fms, fma, fnma (f2=f0 or f4=f1), fmpy, fadd, fsub, frcpa,
frsqrta, fmin, fmax, famin, famax, fpmin, fcvt.fx, fcmp

FP_TRUE_SIRSTALL

• Title: SIR Stall Asserted and Leads to a Trap

• Category: Instruction Execution IAR/DAR/OPC: Y/N/N

• Event Code: 0x03, 0D[��,QF�&\F��1

• Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and
leads to a trap.

HPW_DATA_REFERENCES

• Title: Data Memory References to VHPT

• Category: L1 Data Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x2d, 0D[��,QF�&\F��4

• Definition: Counts the number of data memory references to VHPT.

• NOTE: If HPW is enabled all the time, this event and L2DTLB_MISSES are equivalent. If
HPW is disabled all the time, this event should count 0. This will include misses the L2DTLB
did not squash even though the instructions causing the miss did not get to retirement.

IA32_INST_RETIRED

• Title: IA-32 Instructions Retired

• Category: Basic events IAR/DAR/OPC: N/N/N

• Event Code: 0x59, 0D[��,QF�&\F��2

• Definition: Counts the number of IA-32 instructions retired.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-51

Performance Monitor Events
IA32_ISA_TRANSITIONS

• Title: Itanium to/from IA-32 ISA Transitions

• Category: Basic events IAR/DAR/OPC: N/N/N

• Event Code: 0x07, 0D[��,QF�&\F��1

• Definition: Counts the number of times instruction set transitions from Itanium to IA-32 or
from IA-32 to Itanium (Number of times PSR.is bit toggles).

IA64_INST_RETIRED

• Title: Retired Itanium Instructions

• Category: Basic Events IAR/DAR/OPC: Y/N/Y

• Event Code: 0x08, 0D[��,QF�&\F��6

• Definition: Counts the number of retired instructions excluding hardware generated RSE
operations and instructions that were predicated off. This event includes all non-branch
instructions which reached retirement with a true predicate and all branches regardless of
predicate. This is a sub event of IA64_TAGGED_INST_RETIRED.

• NOTE: MLX bundles will be counted as no more than two instructions. Make sure that the
corresponding registers are setup such that nothing will be constrained by the IBRP-PMC
combination of interest (power up default is no constraints).

An example of non-default setup follows:

Let’s say we want to use IBRP2-PMC8 for measuring IA64_INST_RETIRED in PMD4. The
following bits need to be programmed to make this happen.

PMC4.umask = xx10

PMC14.IBRP2 = 1 (PMC14 is also known as IPF_IBRC)

PMC15.IBRP2_PMC8 = 1 (PMC15 is also known as ISD_DEBUGTAG). Note that PMC8 can
still be used for the IBRP0_PMC8 umask.

IA64_TAGGED_INST_RETIRED

• Title: Retired Tagged Instructions

• Category: Instruction Execution IAR/DAR/OPC: Y/N/Y

• Event Code: 0x08, 0D[��,QF�&\F��6

• Definition: Counts the number of retired instructions, excluding hardware generated RSE
operations and instructions that were predicated off, that match the Instruction Address
Breakpoint (IBRs) and Opcode Match register settings (PMC8,9). This event includes all
non-branch instructions which reached retirement with a true predicate and all branches
regardless of predicate. See Section 10.3.5, “Instruction Address Range Matching” for more
details about how to program different registers.

• NOTE: MLX bundles will be counted as no more than two instructions.

Table 11-67. Unit Masks for IA64_INST_RETIRED

Extension PMC.umask
[19:16] Description

THIS bxx00 Retired Itanium Instructions
11-52 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
IDEAL_BE_LOST_BW_DUE_TO_FE

• Title: Invalid Bundles at the Exit From IB

• Category: Stall Events IAR/DAR/OPC: N/N/N

• Event Code: 0x73, 0D[��,QF�&\F��2

• Definition: Counts the number of invalid bundles at the exit from Instruction Buffer regardless
of whether Back-end is stalled for other reasons or not.

• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for
this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC,
BUBBLE, IBFULL, UNREACHED. The prioritization implies that when several stall
conditions exist at the same time, only the highest priority one will be counted. There are two
cases where a bundle is considered “unreachable”. When bundle 0 contains a taken branch or
bundle 0 is invalid but has IP[4] set to 1, bundle 1 will not be reached.

Table 11-68. Unit Masks for IA64_TAGGED_INST_RETIRED

Extension PMC.umask
[19:16] Description

IBRP0_PMC8 bxx00 Instruction tagged by Instruction Breakpoint Pair 0 and
opcode matcher PMC8. Code executed with PSR.is=1 is
included.

IBRP1_PMC9 bxx01 Instruction tagged by Instruction Breakpoint Pair 1 and
opcode matcher PMC9. Code executed with PSR.is=1 is
included.

IBRP2_PMC8 bxx10 Instruction tagged by Instruction Breakpoint Pair 2 and
opcode matcher PMC8. Code executed with PSR.is=1 is not
included.

IBRP3_PMC9 bxx11 Instruction tagged by Instruction Breakpoint Pair 3 and
opcode matcher PMC9. Code executed with PSR.is=1 is not
included.

Table 11-69. Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE

Extension PMC.umask
[19:16] Description

ALL b0000 Count regardless of cause

FEFLUSH b0001 Only if caused by a front-end flush

— b0010 (* count is undefined *)

— b0011 (* illegal selection *)

UNREACHED b0100 Only if caused by unreachable bundle

IBFULL b0101 (* meaningless for this event *)

IMISS b0110 Only if caused by instruction cache miss stall

TLBMISS b0111 Only if caused by TLB stall

FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation

BI b1001 Only if caused by branch initialization stall

BRQ b1010 Only if caused by branch retirement queue stall

PLP b1011 Only if caused by perfect loop prediction stall

BR_ILOCK b1100 Only if caused by branch interlock stall
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-53

Performance Monitor Events
INST_CHKA_LDC_ALAT

• Title: Retired chk.a and ld.c Instructions

• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x56, 0D[��,QF�&\F��2

• Definition: Provides information on the number of all advanced check load (chk.a) and
check load (ld.c) instructions that reach retirement.

• NOTE: Faulting chk.a will be counted even if an older sibling faults.

INST_DISPERSED

• Title: Number of Syllables Dispersed from REN to REG

• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N

• Event Code: 0x4d, 0D[��,QF�&\F��6

• Definition: Counts the number of syllables dispersed from REName to the REGister pipe stage
in order to approximate those dispersed from ROTate to EXPand.

INST_FAILED_CHKA_LDC_ALAT

• Title: Failed chk.a and ld.c Instructions

• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x57, 0D[��,QF�&\F��1

• Definition: Provides information on the number of failed advanced check load (chk.a) and
check load (ld.c) instructions that reach retirement.

• NOTE: Although at any given time, there could be 2 failing chk.a or ld.c, only the first one
is counted.

BUBBLE b1101 Only if caused by branch resteer bubble stall

— b1101-b1111 (* illegal selection *)

Table 11-69. Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE (Continued)

Extension PMC.umask
[19:16] Description

Table 11-70. Unit Masks for INST_CHKA_LDC_ALAT

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

INT bxx01 Only integer instructions

FP bxx10 Only floating-point instructions

ALL bxx11 Both integer and floating-point instructions

Table 11-71. Unit Masks for INST_FAILED_CHKA_LDC_ALAT

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

INT bxx01 Only integer instructions
11-54 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
INST_FAILED_CHKS_RETIRED

• Title: Failed chk.s Instructions

• Category: Instruction Execution IAR/DAR/OPC: N/N/N

• Event Code: 0x55, 0D[��,QF�&\F��1

• Definition: Provides information on the number of failed speculative check instructions
(chk.s).

ISB_BUNPAIRS_IN

• Title: Bundle Pairs Written from L2 into FE

• Category: L1 Instruction Cache and prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x46, 0D[��,QF�&\F��1

• Definition: Provides information about the number of bundle pairs (32 bytes) written from L2
(and beyond) into the front-end.

• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch and
IBRP1 if the cache line was tagged as a prefetch match.

ITLB_MISSES_FETCH

• Title: Instruction Translation Buffer Misses Demand Fetch

• Category: TLB IAR/DAR/OPC: Y/N/N

• Event Code: 0x47, 0D[��,QF�&\F��1

• Definition: Counts the number of ITLB misses for demand fetch.

FP bxx10 Only floating-point instructions

ALL bxx11 Both integer and floating-point instructions

Table 11-71. Unit Masks for INST_FAILED_CHKA_LDC_ALAT (Continued)

Extension PMC.umask
[19:16] Description

Table 11-72. Unit Masks for INST_FAILED_CHKS_RETIRED

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

INT bxx01 Only integer instructions

FP bxx10 Only floating-point instructions

ALL bxx11 Both integer and floating-point instructions

Table 11-73. Unit Masks for ITLB_MISSES_FETCH

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

L1ITLB bxx01 All misses in L1ITLB will be counted. even if L1ITLB is not
updated for an access (Uncacheable/nat page/not present
page/faulting/some flushed), it will be counted here.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-55

Performance Monitor Events
L1DTLB_TRANSFER

• Title: L1DTLB Misses that Hit in the L2DTLB for Accesses Counted in L1D_READS

• Category: TLB/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc0, 0D[��,QF�&\F��1

• Definition: Counts the number of times an L1DTLB miss hits in the L2DTLB for an access
counted in L1D_READS.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. In code sequence a;;b if “a” takes an exception
and “b” requires an L2DTLB->L1DTLB transfer, the transfer is performed but not counted in
this event. This is necessary to remain consistent with L1D_READS which will not count “b”
because it is not reached.

L1D_READS_SET0

• Title: L1 Data Cache Reads (Set 0)

• Category: L1 Data Cache/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc2, 0D[��,QF�&\F��2

• Definition: Counts the number of data memory read references issued into memory pipeline
which are serviced by L1D (only integer loads), RSE loads, L1-hinted loads (L1D returns data if
it hits in L1D but does not do a fill) and check loads (ld.c). Uncacheable reads, VHPT loads,
semaphores, floating-point loads, and lfetch instructions are not counted here because L1D
does not handle these. The count includes wrong path operations but excludes predicated off
operations.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1D_READS_SET1

• Title: L1 Data Cache Reads (Set 1)

• Category: L1 Data Cache/L1D Cache Set 1IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc40D[��,QF�&\F�2

• Definition: Counts the number of data memory read references issued into memory pipeline
which are serviced by L1D (only integer loads), RSE loads, L1-hinted loads (L1D returns data if
it hits in L1D but does not do a fill) and check loads (ld.c). Uncacheable reads, VHPT loads,
semaphores, floating-point loads and lfetch instructions are not counted here because L1D
does not handle these. The count includes wrong path operations but excludes predicated off
operations.

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L2ITLB bxx10 All misses in L1ITLB which also missed in L2ITLB will be
counted.

ALL bxx11 All tlb misses will be counted. Note that this is not equal to
sum of the L1ITLB and L2ITLB umasks because any access
could be a miss in L1ITLB and L2ITLB.

Table 11-73. Unit Masks for ITLB_MISSES_FETCH (Continued)

Extension PMC.umask
[19:16] Description
11-56 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L1D_READ_MISSES

• Title: L1 Data Cache Read Misses

• Category: L1 Data Cache/L1D Cache Set 1 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc7, 0D[��,QF�&\F��2

• Definition: Counts the number of L1 Data Cache read misses. L1 Data Cache is write through;
therefore write misses are not counted. The count only includes misses caused by references
counted by L1D_READS event. It will include L1D misses which missed the ALAT but not
those which hit in the ALAT. Semaphores are not handled by L1D and are not included in this
count

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1ITLB_INSERTS_HPW

• Title: L1ITLB Hardware Page Walker Inserts

• Category: TLB IAR/DAR/OPC: Y/N/N

• Event Code: 0x48, 0D[��,QF�&\F��1

• Definition: Counts the number of L1ITLB inserts done by Hardware Page Walker.

L1I_EAR_EVENTS

• Title: Instruction EAR Events

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x43, 0D[��,QF�&\F��1

• Definition: Counts the number of L1 Instruction Cache or L1ITLB events captured by EAR.

L1I_FETCH_ISB_HIT

• Title: “Just-In-Time” Instruction Fetch Hitting In and Being Bypassed from ISB

• Category: L1 Instruction Cache and Prefetch, IAR/DAR/OPC: Y/N/N

• Event Code: 0x66, 0D[��,QF�&\F��1

• Definition: Provides information about an instruction fetch hitting in and being bypassed from
the ISB (Instruction Streaming Buffer). It will not count “critical bypasses,” i.e. anytime the
pipeline has to stall waiting for data to be delivered from L2. It will count “just-in-time
bypasses,” i.e. when instruction data is delivered by the L2 in time for the instructions to be
consumed without stalling the front-end pipe.

• NOTE: Demand fetches which hit the ISB at the same time as they are being transferred to the
Instruction Cache (1 cycles window) will not be counted because they have to be treated as cache
hits for the purpose of branch prediction. This event is qualified with IBRP0 if the cache line was
tagged as a demand fetch and IBRP1 if the cache line was tagged as a prefetch match.

Table 11-74. Unit Masks for L1D_READ_MISSES

Extension PMC.umask
[19:16] Description

ALL bxxx0 All L1D read misses will be counted.

RSE_FILL bxxx1 Only L1D read misses caused by RSE fills will be counted
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-57

Performance Monitor Events
L1I_FETCH_RAB_HIT

• Title: Instruction Fetch Hitting in RAB

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x65, 0D[��,QF�&\F��1

• Definition: Provides Information about instruction fetch hitting in the RAB.

• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch and
IBRP1 if the cache line was tagged as a prefetch match.

L1I_FILLS

• Title: L1 Instruction Cache Fills

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x41, 0D[��,QF�&\F��1

• Definition: Provides information about the number of line fills from ISB to the L1 Instruction
Cache (64-byte chunks).

• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch or
IBRP1 if the cache line was tagged as a prefetch match. It is impossible for this event to fire if
the corresponding entry is not in L1ITLB

L1I_PREFETCHES

• Title: L1 Instruction Prefetch Requests

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x44, 0D[��,QF�&\F��1

• Definition: Provides information about the number of issued L1 cache line prefetch requests
(64 bytes/line). The reported number includes streaming and non-streaming prefetches (hits and
misses in L1 Instruction Cache are both included).

• NOTE: This event is qualified with IBRP1

L1I_PREFETCH_STALL

• Title: Prefetch Pipeline Stalls

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

• Event Code: 0x67, 0D[��,QF�&\F��1

• Definition: Provides Information on why the prefetch pipeline is stalled.

Table 11-75. Unit Masks for L1I_PREFETCH_STALL

Extension PMC.umask
[19:16] Description

— bxx00-bxx01 (* nothing will be counted *)

FLOW bxx10 Number of clocks flow is not asserted

ALL bxx11 Number of clocks prefetch pipeline is stalled
11-58 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L1I_PURGE

• Title: L1ITLB Purges Handled by L1I

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x4b, 0D[��,QF�&\F��1

• Definition: Provides information on the number of L1ITLB purges handled by L1I. This event
is caused by a purge instruction, global purge from the bus cluster, inserts into L2ITLB. It is not
the same as column invalidates which are done on L1ITLB.

L1I_PVAB_OVERFLOW

• Title: PVAB Overflow

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

• Event Code: 0x69, 0D[��,QF�&\F��1

• Definition: Provides Information about the Prefetch Virtual Address Buffer overflowing.

L1I_RAB_ALMOST_FULL

• Title: Is RAB Almost Full?

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

• Event Code: 0x64, 0D[��,QF�&\F��1

• Definition: Provides Information about Read Address Buffer being almost full.

L1I_RAB_FULL

• Title: Is RAB Full?

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

• Event Code: 0x60, 0D[��,QF�&\F��1

• Definition: Provides Information about Read Address Buffer being full.

L1I_READS

• Title: L1 Instruction Cache Reads

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x40, 0D[��,QF�&\F��1

• Definition: Provides information about the number of demand fetch reads (i.e. all accesses
regardless of hit or miss) to the L1 Instruction Cache (32-byte chunks).

• NOTE: Demand fetches which have an L1ITLB miss, and L1I cache miss, and collide with a
fill-recirculate to icache, will not be counted in this event even though they will be counted in
L2_INST_DEMAND_READS.

L1I_SNOOP

• Title: Snoop Requests Handled by L1I

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x4a, 0D[��,QF�&\F��1

• Definition: Provides information on the number of snoop requests (64-byte granular) handled
by L1I.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-59

Performance Monitor Events
• NOTE: Each “fc” instruction will produce 1 snoop request to L1I after it goes out on the bus.
Although each IA32 store will produce 1 snoop request to L1I, it will be counted here as many
times as it is recirculated in L1D because it is busy doing more important things. If IFR snoop
pipeline is busy when L1D sends the snoop to IFR, this event will count more than once for the
same snoop. A victimized line will also produce a snoop. Some bus transactions also can cause
L1I snoops.

L1I_STRM_PREFETCHES

• Title: L1 Instruction Cache Line Prefetch Requests

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x5f, 0D[��,QF�&\F��1

• Definition: Provides Information about the number of L1I cache line prefetch requests (64
bytes/line) which go through prefetch pipeline (i.e. hit or miss in L1I cache is not factored in) in
streaming mode only (initiated by br.many).

• NOTE: This event is qualified with IBRP1.

L2_BAD_LINES_SELECTED

• Title: Valid Line Replaced When Invalid Line Is Available

• Category: L2 Unified Cache/L2 Cache Set 3 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb9, 0D[��,QF�&\F��4

• Definition: Counts the number of times a valid line was selected for replacement when an
invalid line was available.

• NOTE: This is a restricted set 3 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with
L2_ISSUED_RECIRC_IFETCH.

L2_BYPASS

• Title: Count L2 Bypasses

• Category: L2 Unified Cache/L2 Cache Set 3 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb8, 0D[��,QF�&\F��1

• Definition: Counts the number of times a bypass occurred.

• NOTE: This is a restricted set 3 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with L2_OPS_ISSUED.

Table 11-76. Unit Masks for L2_BAD_LINES_SELECTED

Extension PMC.umask
[19:16] Description

ANY b0xxx Valid line replaced when invalid line is available

Table 11-77. Unit Masks for L2_BYPASS

Extension PMC.umask
[19:16] Description

L2_DATA1 b0000 Count only L2 data bypasses (L1D to L2A)

L2_DATA2 b0001 Count only L2 data bypasses (L1W to L2I)

L3_DATA1 b0010 Count only L3 data bypasses (L1D to L2A)
11-60 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_DATA_REFERENCES

• Title: Data Read/Write Access to L2

• Category: L2 Unified Cache/L2 Cache Set 1 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb2, 0D[��,QF�&\F��4

• Definition: Counts the number of requests made to L2 due to a data read and/or write accesses.
The reported count is the number of requests prior to cache line merging. Semaphore operations
are counted as one read and one write.

• NOTE: This is a restricted set 1 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2DTLB_MISSES

• Title: L2DTLB Misses

• Category: TLB/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xc1, 0D[��,QF�&\F��4

• Definition: Counts the number of L2DTLB misses (which is the same as references to HPW;
DTLB_HIT=0) for demand requests.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. If HPW is enabled all the time, this event and
HPW_DATA_REFERENCES are equivalent. This will include misses the L2DTLB did not
squash even though the instructions causing the miss did not get to retirement.

— b0011 (* nothing will be counted *)

L2_INST1 b0100 Count only L2 instruction bypasses (L1D to L2A)

L2_INST2 b0101 Count only L2 instruction bypasses (L1W to L2I)

L3_INST1 b0110 Count only L3 instruction bypasses (L1D to L2A)

— b0111 (* nothing will be counted *)

Table 11-77. Unit Masks for L2_BYPASS (Continued)

Extension PMC.umask
[19:16] Description

Table 11-78. Unit Masks for L2_DATA_REFERENCES

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

L2_DATA_READS bxx01 Count only data read and semaphore operations.

L2_DATA_WRITES bxx10 Count only data write and semaphore operations

L2_ALL bxx11 Count both read and write operations (semaphores will
count as 2)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-61

Performance Monitor Events
L2_FILLB_FULL

• Title: L2 Fill Buffer Is Full

• Category: L2 Unified Cache IAR/DAR/OPC: N/N/N

• Event Code: 0xbf, 0D[��,QF�&\F��1

• Definition: Counts the number of times L2 Fill Buffer is full.

• NOTE: This is a restricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_FORCE_RECIRC

• Title: Forced Recirculates

• Category: L2 Unified Cache/L2 Cache Set 2 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb4, 0D[��,QF�&\F��4

• Definition: Counts the number of L2 ops forced to recirculate, with the exception of
SNP_OR_L3. SNP_OR_L3 will measure the number of times L2 ops are forced to recirculate.
Anywhere from 0-32 ops can be affected by this one. All categories with the exception of
SMC_HIT, TRAN_PERF, and SNP_OR_L3 occur at the insertion into the OZQ. SMC_HIT is
when an ifetch is about to be written into the IPFQ and is forced to recirculate because there is an
outstanding store to the same address. SNP_OR_L3 is when an existing OZQ entry is forced to
recirculate because an incoming request matched its address or an access is issued to the L3/BC
which will fill the same way/index this OZQ_ENTRY has “hit” in. TRAN_PREF is when an
existing OZQ access is transformed into a prefetch.

• NOTE: This is a restricted set 2 L2 Cache event. This event must be measured by PMD4.

Table 11-79. Unit Masks for L2_FILLB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2 Fill buffer is full

— b0001-b1111 (* count is undefined *)

Table 11-80. Unit Masks for L2_FORCE_RECIRC

Extension PMC.umask
[19:16] Description

ANY b0000 Count forced recirculates regardless of cause. SMC_HIT,
TRAN_PREF & SNP_OR_L3 will not be included here.

SMC_HIT b0001 Count only those caused by SMC hits due to an ifetch and
load to same cache line or a pending WT store

L1W b0010 Count only those caused by forced limbo

— b0011 (* nothing will be counted *)

TAG_NOTOK b0100 Count only those caused by L2 hits caused by in flight
snoops, stores with a sibling miss to the same index, sibling
probe to the same line or a pending sync.ia instruction

TRAN_PREF b0101 Count only those caused by transforms to prefetches

SNP_OR_L3 b0110 Count only those caused by a snoop or L3 issue

— b0111 (* nothing will be counted *)

VIC_PEND b1000 Count only those caused by an L2 miss with pending victim
11-62 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_GOT_RECIRC_IFETCH

• Title: Instruction Fetch Recirculates Received by L2

• Category: L2 Unified Cache/L2 Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xba, 0D[��,QF�&\F��1

• Definition: Counts the number of instruction fetch recirculates received by L2.

• NOTE: This is a restricted set 4 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with
L2_STORE_HIT_SHARED.

L2_GOT_RECIRC_OZQ_ACC

• Title: Counts OZQ Accesses Recirculated to L1D

• Category: L2 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb6, 0D[��,QF�&\F��1

• Definition: Counts number of OZQ accesses successfully recirculated to L1D.

• NOTE: This is a restricted set 2 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_IFET_CANCELS

• Title: Instruction Fetch Cancels by the L2.

• Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xa1,0xa5,0xa9,0xad, 0D[��,QF�&\F��1

• Definition: Counts the number of total instruction fetch cancels by L2

• NOTE: This is a restricted set 0 L2 Cache event. In order to measure this event, one of the
L2_OZQ_CANCEL events or this event must be measured by PMD4.

FILL_HIT b1001 Count only those caused by an L2 miss which hit in the fill
buffer.

IPF_MISS b1010 Caused by L2 miss when instruction prefetch buffer miss
already existed

VIC_BUF_FULL b1011 Count only those caused by an L2 miss with victim buffer full

OZQ_MISS b1100 Caused by an L2 miss when an OZQ miss already existed

SAME_INDEX b1101 Caused by an L2 miss when a miss to the same index
already existed

FRC_RECIRC b1110 Caused by an L2 miss when a force recirculate already
existed

— b1111 (* nothing will be counted *)

Table 11-80. Unit Masks for L2_FORCE_RECIRC (Continued)

Extension PMC.umask
[19:16] Description

Table 11-81. Unit Masks for L2_GOT_RECIRC_IFETCH

Extension PMC.umask
[19:16] Description

ANY b1xxx Instruction fetch recirculates received by L2
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-63

Performance Monitor Events
L2_INST_DEMAND_READS

• Title: L2 Instruction Demand Fetch Requests

• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x42, 0D[��,QF�&\F��1

• Definition: Counts the number of instruction requests to L2 due to L1I demand fetch misses.
This event counts the number of demand fetches that miss both the L1I and the ISB regardless of
whether they hit or miss in the RAB.

• NOTE: If a demand fetch does not have an L1ITLB miss, L2_INST_DEMAND_READS and
L1I_READS line up in time. If a demand fetch does not have an L2ITLB miss,
L2_INST_DEMAND_READS follows L1I_READS by 3-4 clocks (unless a flushed iwalk is
pending ahead of it; which will increase the delay until the pending iwalk is finished). If demand
fetch has an L2ITLB miss, the skew between L2_INST_DEMAND_READS and L1I_READS is
not deterministic.

L2_INST_PREFETCHES

• Title: L2 Instruction Prefetch Requests

• Category: L1 Instruction Cache and prefetch IAR/DAR/OPC: Y/N/N

• Event Code: 0x45, 0D[��,QF�&\F��1

• Definition: Provides information about the number of prefetch requests issued to the unified
L2 cache. The reported number includes streaming and non-streaming prefetches.

• NOTE: This event is qualified with IBRP1.

L2_ISSUED_RECIRC_IFETCH

• Title: Instruction Fetch Recirculates Issued by L2

• Category: L2 Unified Cache/L2 Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb9, 0D[��,QF�&\F��1

• Definition: Counts the number of instruction fetch recirculates issued by L2.

• NOTE: This is a restricted set 4 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with
L2_BAD_LINES_SELECTED.

Table 11-82. Unit Masks for L2_IFET_CANCELS

Extension PMC.umask
[19:16] Description

ANY b000x Total instruction fetch cancels by L2

BYPASS b001x ifetch cancels due to bypassing

DIDNT_RECIR b0100 ifetch cancels because it did not recirculate

RECIR_OVER_SUB b0101 ifetch cancels because of recirculate oversubscription

ST_FILL_WB b0110 ifetch cancels due to a store or fill or write back

DATA_RD b0111 ifetch/prefetch cancels due to a data read

PREEMPT b10xx ifetch cancels due to preempts

CHG_PRIO b1100 ifetch cancels due to change priority

IFETCH_BYP b1101 Due to ifetch bypass during last clock

— b1110-b1111 (* nothing will be counted *)
11-64 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_ISSUED_RECIRC_OZQ_ACC

• Title: Count Number of Times a Recirculate Issue Was Attempted and Not Preempted

• Category: L2 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb5, 0D[��,QF�&\F��1

• Definition: Counts the number of times a recirculate was attempted that didn’t get preempted
by a fill/confirm/evervalid (fill/confirm tag updates have higher priority) or by an older sibling
issuing a recirculate (only one recirculate can be sent per clock). This value can be added to
L2_OZQ_CANCELS*.DIDNT_RECIRC for the total number of times the L2 issue logic
attempted to issue a recirculate.

• NOTE: This is a restricted set 2 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_L3ACCESS_CANCEL

• Title: Canceled L3 Accesses

• Category: L2 Unified Cache/L2 Cache Set 1 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb0, 0D[��,QF�&\F��1

• Definition: Counts the number of canceled L3 accesses. A unit mask, as specified in the
following table, narrows this event down to a specific reason for the cancel.

• NOTE: This is a restricted set 1 L2 Cache event. This event must be measured by PMD4.

Table 11-83. Unit Masks for L2_ISSUED_RECIRC_IFETCH

Extension PMC.umask
[19:16] Description

ANY b1xxx Instruction fetch recirculates issued by L2

Table 11-84. Unit Masks for L2_L3ACCESS_CANCEL

Extension PMC.umask
[19:16] Description

— b0000 (* nothing will be counted *)

SPEC_L3_BYP b0001 Speculative L3 bypasses

FILLD_FULL b0010 Filld being full

— b0011 (* count is undefined *)

— b0100 (* nothing will be counted *)

UC_BLOCKED b0101 Uncacheable blocked L3 Accesses

INV_L3_BYP b0110 Invalid L3 bypasses

EBL_REJECT b1000 ebl rejects

ANY b1001 Count cancels due to any reason. This umask will count
more than the sum of all the other umasks. It will count
things that weren't committed accesses when they reached
L1w, but the L2 attempted to bypass them to the L3 anyway
(speculatively). This will include accesses made repeatedly
while the main pipeline is stalled and the L1d is attempting
to recirculate an access down the L1d pipeline. Thus, an
access could get counted many times before it really does
get bypassed to the L3. It is a measure of how many times
we asserted a request to the L3 but didn't confirm it.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-65

Performance Monitor Events
L2_MISSES

• Title: L2 Misses

• Category: L2 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xcb, 0D[��,QF�&\F��1

• Definition: Counts the number of L2 cache misses (in terms of the number of L2 cache line
requests sent to L3). It includes misses caused by instruction fetch/prefect and data read/write
operations. It does not include L1 misses to uncacheable or write-coalescing addresses.

L2_OPS_ISSUED

• Title: Operations Issued By L2

• Category: L2 Unified Cache/L2 Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb8, 0D[��,QF�&\F��4

• Definition: Counts the number of operations issued by L2 as specified by the operation type
(i.e operations which were valid in the L2 pipe stage. So even if they are canceled later on, they
will be counted. Fires only for operations which hit in L2; i.e. OzQ is handling them).

• NOTE: This is a restricted set 4 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with L2_BYPASS.

L2_OZDB_FULL

• Title: L2 OZ Data Buffer Is Full

• Category: L2 Unified Cache/L2 Cache Set 5 IAR/DAR/OPC: N/N/N

• Event Code: 0xbd, 0D[��,QF�&\F��1

• Definition: Counts the number of times L2 Oz Data Buffer is full.

• NOTE: This is a restricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

DFETCH b1010 Data fetches

IFETCH b1011 Instruction fetches

— b1100-b1111 (* nothing will be counted *)

Table 11-84. Unit Masks for L2_L3ACCESS_CANCEL (Continued)

Extension PMC.umask
[19:16] Description

Table 11-85. Unit Masks for L2_OPS_ISSUED

Extension PMC.umask
[19:16] Description

INT_LOAD b1000 Count only valid integer loads

FP_LOAD b1001 Count only valid floating-point loads

RMW b1010 Count only valid read_modify_write stores

STORE b1011 Count only valid non-read_modify_write stores

NST_NLD b1100 Count only valid non-load, no-store accesses

— b1101-b1111 (* nothing will be counted *)
11-66 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_OZQ_ACQUIRE

• Title: Clocks With Acquire Ordering Attribute Existed in L2 OZQ

• Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: N/N/N

• Event Code: 0xa2,0xa6,0xaa,0xae, 0D[��,QF�&\F��1

• Definition: Counts the number of clocks entries with “acquire” ordering attribute existed in the
L2 OZ Queue.

• NOTE: This is a restricted set 0 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_OZQ_CANCELS0

• Title: L2 OZQ Cancels (Late or Any)

• Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xa0, 0D[��,QF�&\F��4

• Definition: Counts the number of total L2 OZ Queue Cancels (regardless of reason) or L2 OZ
Queue Cancels due to a specific reason (based on umask).

• NOTE: This is a restricted set 0 L2 Cache event. Only 1 of the 3 L1_OZQ_CANCEL events
may be measured at any given time. In order to measure this event, either L2_IFET_CANCELS
or this event must be measured by PMD4.

Table 11-86. Unit Masks for L2_OZDB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2 OZ Data Buffer is full

— b0001-b1111 (* count is undefined *)

Table 11-87. Unit Masks for L2_OZQ_CANCELS0

Extension PMC.umask
[19:16] Description

ANY bx000 Counts the total OZ Queue cancels

LATE_SPEC_BYP bx001 Counts the late cancels caused by speculative bypasses

LATE_RELEASE bx010 Counts the late cancels caused by releases

LATE_ACQUIRE bx011 Counts the late cancels caused by acquires

LATE_BYP_EFFRELEASE bx100 Counts the late cancels caused by L1D to L2A bypass
effective releases

— bx101-bx111 (* nothing will be counted *)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-67

Performance Monitor Events
L2_OZQ_CANCELS1

• Title: L2 OZQ Cancels (Specific Reason Set 1)

• Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xac, 0D[��,QF�&\F��4

• Definition: Counts the number of total L2 OZ Queue Cancels due to a specific reason (based
on umask).

• NOTE: This is a restricted set 0 L2 Cache event. Only 1 of the 3 L1_OZQ_CANCEL events
may be measured at any given time. In order to measure this event, either L2_IFET_CANCELS
or this event must be measured by PMD4.

L2_OZQ_CANCELS2

• Title: L2 OZQ Cancels (Specific Reason Set 2)

• Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xa8, 0D[��,QF�&\F��4

• Definition: Counts the number of total L2 OZ Queue due to a specific reason (based on
umask).

• NOTE: This is a restricted set 0 L2 Cache event. Only 1 of the 3 L1_OZQ_CANCEL events
may be measured at any given time. In order to measure this event, either L2_IFET_CANCELS
or this event must be measured by PMD4.

Table 11-88. Unit Masks for L2_OZQ_CANCELS1

Extension PMC.umask
[19:16] Description

REL b0000 Caused by release

BANK_CONF b0001 Bank conflicts

L2D_ST_MAT b0010 A store match in L2D

— b0011 (* nothing will be counted *)

SYNC b0100 Caused by sync.i

HPW_IFETCH_CONF b0101 A ifetch conflict (canceling HPW?)

CANC_L2M_ST b0110 Caused by a canceled store in L2M

L1_FILL_CONF b0111 An L1 fill conflict

ST_FILL_CONF b1000 A store fill conflict

CCV b1001 A ccv

SEM b1010 A semaphore

L2M_ST_MAT b1011 A store match in L2M

MFA b1100 A memory fence instruction

L2A_ST_MAT b1101 A store match in L2A

L1DF_L2M b1110 L1D fill in L2M

ECC b1111 ECC hardware detecting a problem
11-68 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_OZQ_FULL

• Title: L2 OZQ Is Full

• Category: L2 Unified Cache/L2 Cache Set 5 IAR/DAR/OPC: N/N/N

• Event Code: 0xbc, 0D[��,QF�&\F��1

• Definition: Counts the number of times L2D Oz Queue is full.

• NOTE: This is a restricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_OZQ_RELEASE

• Title: Clocks With Release Ordering Attribute Existed in L2 OZQ

• Category: L2 Unified Cache/L2 Cache Set 0IAR/DAR/OPC: N/N/N

• Event Code: 0xa3,0xa7,0xab,0xaf0D[��,QF�&\F�1

• Definition: Counts the number of clocks entries with “release” ordering attribute existed in the
L2 OZ Queue.

Table 11-89. Unit Masks for L2_OZQ_CANCELS2

Extension PMC.umask
[19:16] Description

RECIRC_OVER_SUB b0000 Caused by a recirculate oversubscription

CANC_L2C_ST b0001 Caused by a canceled store in L2C

L2C_ST_MAT b0010 A store match in L2C

SCRUB b0011 32/64 byte HPW/L2D fill which needs scrub

ACQ b0100 Caused by an acquire

READ_WB_CONF b0101 A write back conflict (canceling read?)

OZ_DATA_CONF b0110 An OZ data conflict

— b0111 (* nothing will be counted *)

L2FILL_ST_CONF b1000 An L2fill and store conflict in L2C

DIDNT_RECIRC b1001 Caused because it did not recirculate

WEIRD b1010 Counts the cancels caused by attempted 5-cycle bypasses
for non-aligned accesses and bypasses blocking
recirculates for too long

— b1011 (* nothing will be counted *)

OVER_SUB b1100 Oversubscription

CANC_L2D_ST b1101 Caused by a canceled store in L2D

— b1110 (* nothing will be counted *)

D_IFET b1111 A demand ifetch

Table 11-90. Unit Masks for L2_OZQ_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D OZQ is full

— b0001-b1111 (* count is undefined *)
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-69

Performance Monitor Events
• NOTE: This is a restricted set 0 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L2_REFERENCES

• Title: Requests Made To L2

• Category: L2 Unified Cache/L2 Cache Set 1 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb1, 0D[��,QF�&\F��4

• Definition: Counts the number of requests (data reads, data writes, instruction fetches and
instruction prefetches) made from L2.

• NOTE: This is a restricted set 1 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Prefetches which are promoted to fetches are only
counted once. Instruction fetches to the second half of a line will not be counted if the fetch for
the first half is already counted. All secondary misses are counted for data references. A
semaphore operation will be counted only once here. Only requests which are entered into the
OZQ are counted here; i.e. recirculated operations will not be recounted. Uncacheable/WC
accesses will not be counted. FROM_CCV, SETF, CCV, PTC_G,PTC_GA, FWB, MF, MFA,
SYNCI, SYNCIA, PTCM, FC, CC operations are excluded.

L2_STORE_HIT_SHARED

• Title: Store Hit a Shared Line

• Category: L2 Unified Cache/L2 Cache Set 3 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xba, 0D[��,QF�&\F��2

• Definition: Counts the number of times a store hit a shared line.

• NOTE: This is a restricted set 3 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4. Shares Event Code with
L2_GOT_RECIRC_IFETCH.

L2_SYNTH_PROBE

• Title: Synthesized Probe

• Category: L2 Unified CacheIAR/DAR/OPC: Y/Y/Y

• Event Code: 0xb70D[��,QF�&\F�1

• Definition: Counts the number of synthesized probes. A synthesized probe indicates that L2
received a fill from the bus cluster with a MESI state of I or P indicating that the fill was hit by an
in-flight snoop. As such, L2 needs to “synthesize” a probe response back to the bus cluster once
the line has been “used once”. For forward progress, L2 won't send the response until it has used
the line once.

• NOTE: This is a restricted set 2 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

Table 11-91. Unit Masks for L2_STORE_HIT_SHARED

Extension PMC.umask
[19:16] Description

ANY b0xxx Store hit a shared line
11-70 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
L2_VICTIMB_FULL

• Title: L2D Victim Buffer Is Full

• Category: L2 Unified Cache/L2 Cache Set 5 IAR/DAR/OPC: N/N/N

• Event Code: 0xbe, 0D[��,QF�&\F��1

• Definition: Counts the number of times L2D Victim Buffer is full.

• NOTE: This is a restricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMD4.

L3_LINES_REPLACED

• Title: L3 Cache Lines Replaced

• Category: L3 Unified Cache IAR/DAR/OPC: N/N/N

• Event Code: 0xdf, 0D[��,QF�&\F��1

• Definition: Counts the number of valid L3 lines (dirty victims) that have been replaced.
Exclusive clean/shared and clean castouts may also be counted depending on platform specific
settings.

L3_MISSES

• Title: L3 Misses

• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xdc, 0D[��,QF�&\F��1

• Definition: Counts the number of L3 cache misses. Includes misses caused by instruction
fetch, data read/write, L2 write backs and the HPW.

L3_READS

• Title: L3 Reads

• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xdd, 0D[��,QF�&\F��1

• Definition: Counts the number of L3 cache read accesses.

Table 11-92. Unit Masks for L2_VICTIMB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D victim buffer is full

— b0001-b1111 (* count is undefined *)

Table 11-93. Unit Masks for L3_READS

Extension PMC.umask
[19:16] Description

— b0000 (* nothing will be counted *)

DINST_FETCH.HIT b0001 L3 Demand Instruction Fetch Hits

DINST_FETCH.MISS b0010 L3 Demand Instruction Fetch Misses

DINST_FETCH.ALL b0011 L3 Demand Instruction References
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-71

Performance Monitor Events
L3_REFERENCES

• Title: L3 References

• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xdb, 0D[��,QF�&\F��1

• Definition: Counts the number of L3 accesses. Includes instruction fetch/prefetch, data
read/write and L2 write backs.

L3_WRITES

• Title: L3 Writes

• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xde, 0D[��,QF�&\F��1

• Definition: Counts the number of L3 cache write accesses.

— b0100 (* nothing will be counted *)

INST_FETCH.HIT b0101 L3 Instruction Fetch and Prefetch Hits

INST_FETCH.MISS b0110 L3 Instruction Fetch and Prefetch Misses

INST_FETCH.ALL b0111 L3 Instruction Fetch and Prefetch References

— b1000 (* nothing will be counted *)

DATA_READ.HIT b1001 L3 Load Hits (excludes reads for ownership used to satisfy
stores)

DATA_READ.MISS b1010 L3 Load Misses (excludes reads for ownership used to
satisfy stores)

DATA_READ.ALL b1011 L3 Load References (excludes reads for ownership used to
satisfy stores)

— b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Read Hits

ALL.MISS b1110 L3 Read Misses

ALL.ALL b1111 L3 Read References

Table 11-93. Unit Masks for L3_READS (Continued)

Extension PMC.umask
[19:16] Description

Table 11-94. Unit Masks for L3_WRITES

Extension PMC.umask
[19:16] Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

DATA_WRITE.HIT b0101 L3 Store Hits (excludes L2 write backs, includes L3 read for
ownership requests that satisfy stores)

DATA_WRITE.MISS b0110 L3 Store Misses (excludes L2 write backs, includes L3 read
for ownership requests that satisfy stores)

DATA_WRITE.ALL b0111 L3 Store References (excludes L2 write backs, includes L3
read for ownership requests that satisfy stores)

— b1000 (* nothing will be counted *)
11-72 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
LOADS_RETIRED

• Title: Retired Loads

• Category: Instruction Execution/L1D Cache Set 3 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xcd, 0D[��,QF�&\F��4

• Definition: Counts the number of retired loads, excluding predicated off loads. The count
includes integer, floating-point, RSE, semaphores, VHPT, uncacheable loads and check loads
(ld.c) which missed in ALAT and L1D (because this is the only time this looks like any other
load).

• NOTE: This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

MEM_READ_CURRENT

• Title: Current Mem Read Transactions On Bus

• Category: Frontside Bus IAR/DAR/OPC: N/N/N

• Event Code: 0x89, 0D[��,QF�&\F��1

• Definition: Counts the number of current memory read transactions (BRC) on the bus.

MISALIGNED_LOADS_RETIRED

• Title: Retired Misaligned Load Instructions

• Category: Instruction Execution/L1D Cache Set 3IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xce0D[��,QF�&\F�4

• Definition: Counts the number of retired misaligned load instructions, excluding those that
were predicated off. It includes integer, floating-point loads, semaphores and check loads
(ld.c) which missed in ALAT and L1D (the only time this looks like any other load).

L2_WB.HIT b1001 L2 Write Back Hits

L2_WB.MISS b1010 L2 Write Back Misses

L2_WB.ALL b1011 L2 Write Back References

— b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Write Hits

ALL.MISS b1110 L3 Write Misses

ALL.ALL b1111 L3 Write References

Table 11-94. Unit Masks for L3_WRITES (Continued)

Extension PMC.umask
[19:16] Description

Table 11-95. Unit Masks for MEM_READ_CURRENT

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

IO bxx01 Non-CPU priority agents

— bxx10 (* illegal selection *)

ANY bxx11 CPU or non-CPU (all transactions).
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-73

Performance Monitor Events
• NOTE: If a misaligned load takes a trap then it will not be counted here since only retired loads
are counted. PSR.ac = 0 and not crossing the 0-7 or 8-15 byte boundary is the only time it will
not trap. This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

MISALIGNED_STORES_RETIRED

• Title: Retired Misaligned Store Instructions

• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xd2, 0D[��,QF�&\F��2

• Definition: Counts the number of retired misaligned store instructions, excluding those that
were predicated off. It includes integer, floating-point, semaphores and uncacheable stores.
Predicated off operations are not counted.

• NOTE: If a misaligned store takes a trap then it will not be counted here since only retired
stores are counted. PSR.ac = 0 and not crossing the 0-15 byte boundary of a WB page is the
only time it will not trap. This is a restricted set 4 L1D Cache event. In order to measure this
event, one of the events in this set must be measured by PMD5. Only ports 2 and 3 are counted.

NOPS_RETIRED

• Title: Retired NOP Instructions

• Category: Instruction Execution IAR/DAR/OPC: YN/Y

• Event Code: 0x50, 0D[��,QF�&\F��6

• Definition: Provides information on number of retired nop.i, nop.m, and nop.b,nop.f
instructions, excluding nop instructions that were predicated off.

PREDICATE_SQUASHED_RETIRED

• Title: Instructions Squashed Due to Predicate Off

• Category: Instruction Execution IAR/DAR/OPC: Y/N/Y

• Event Code: 0x51, 0D[��,QF�&\F��6

• Definition: Provides information on number of instructions squashed due to a false qualifying
predicate. Includes all non-B-syllable instructions which reached retirement with a false
predicate.

RSE_CURRENT_REGS_2_TO_0

• Title: Current RSE Registers (Bits 2:0)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x2b, 0D[��,QF�&\F��7

• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The lowest 3 bits are stored in
this counter (bits 2:0).

RSE_CURRENT_REGS_5_TO_3

• Title: Current RSE Registers (Bits 5:3)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x2a0D[��,QF�&\F�7
11-74 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

RSE_CURRENT_REGS_6

• Title: Current RSE Registers (Bit 6)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x26, 0D[��,QF�&\F��1

• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The highest 1 bit is stored in
this counter (bit 6).

RSE_DIRTY_REGS_2_TO_0

• Title: Dirty RSE Registers (Bits 2:0)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x29, 0D[��,QF�&\F��7

• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The lowest 3 bits are stored in
this counter (bits 2:0).

RSE_DIRTY_REGS_5_TO_3

• Title: Dirty RSE Registers (Bits 5:3)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x28, 0D[��,QF�&\F��7

• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

RSE_DIRTY_REGS_6

• Title: Dirty RSE Registers (Bit 6)

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x24, 0D[��,QF�&\F��1

• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have a total of 96 per cycle. The highest one bit is stored
in this counter (bit 6).

RSE_EVENT_RETIRED

• Title: Retired RSE Operations

• Category: RSE Events IAR/DAR/OPC: N/N/N

• Event Code: 0x32, 0D[��,QF�&\F��1

• Definition: Counts the number of retired RSE operations (i.e. alloc, br.ret, br.call,
loadrs, flushrs, cover, and rfi - see NOTE). This event is an indication of when instructions which
affect the RSE are retired (which may or may not cause activity to memory subsystem).

• NOTE: The only time 2 RSE events can be retired in 1 clock are flushrs/call or flushrs/return
bundles. These corner cases are counted as 1 event instead of 2 since this event is used to
calculate the average number of current/dirty/invalid registers. rfi instructions will be included
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-75

Performance Monitor Events
only if ifsvalid=1; which can be set either by using the cover instruction prior to the rfi, or
explicitly setting the valid bit.

RSE_REFERENCES_RETIRED

• Title: RSE Accesses

• Category: RSE Events IAR/DAR/OPC: Y/Y/Y

• Event Code: 0x20, 0D[��,QF�&\F��2

• Definition: Counts the number of retired RSE loads and stores (Every time RSE.bof reaches
RSE.storereg; otherwise known as mandatory events including rnat fills & spills). This event is
an indication of when RSE causes activity to memory subsystem.

• NOTE: Privilege level for DBR tags is determined by the RSC register; but privilege level for
IBR tags is determined by PSR.cpl. RSE traffic which is caused by rfi will be tagged by the
target of the rfi.

SERIALIZATION_EVENTS

• Title: Number of srlz.i Instructions

• Category: System Events IAR/DAR/OPC: N/N/N

• Event Code: 0x53, 0D[��,QF�&\F��1

• Definition: Counts the number of srlz.i instructions (because it causes a microtrap and an
xpnflush fires).

STORES_RETIRED

• Title: Retired Stores

• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xd1, 0D[��,QF�&\F��2

• Definition: Counts the number of retired stores, excluding those that were predicated off. The
count includes integer, floating-point, semaphore, RSE, VHPT, uncacheable stores.

• NOTE: This is a restricted set 4 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 2 and 3 are counted.

SYLL_NOT_DISPERSED

• Title: Syllables Not Dispersed

• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N

• Event Code: 0x4e, 0D[��,QF�&\F��5

• Definition: Counts the number of syllables not dispersed due to all reasons except stalls. A unit
mask can break this down to 1 of 4 possible components.

Table 11-96. Unit Masks for RSE_REFERENCES_RETIRED

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

LOAD bxx01 Only RSE loads will be counted.

STORE bxx10 Only RSE stores will be counted.

ALL bxx11 Both RSE loads and stores will be counted.
11-76 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events
SYLL_OVERCOUNT

• Title: Number of Overcounted Syllables.

• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N

• Event Code: 0x4f, 0D[��,QF�&\F��2

• Definition: Counts the number of syllables which were overcounted in explicit and/or implicit
stop bits portion of SYLL_NOT_DISPERSED.

UC_LOADS_RETIRED

• Title: Retired Uncacheable Loads

• Category: Instruction Execution/L1D Cache Set 3IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xcf0D[��,QF�&\F�4

• Definition: Counts the number of retired uncacheable load instructions, excluding those that
were predicated off. It includes integer, floating-point, semaphores, RSE, and VHPT loads, and
check loads (ld.c) which missed in ALAT and L1D (the only time this looks like any other
load).

Table 11-97. Unit Masks for SYLL_NOT_DISPERSED

Extension PMC.umask
[19:16] Description

EXPL bxxx1 Count syllables not dispersed due to explicit stop bits. These
consist of programmer specified architected S-bit and
templates 1 and 5. Dispersal takes a 6-syllable (3-syllable)
hit for every template 1/5 in bundle 0(1). Dispersal takes a
3-syllable (0 syllable) hit for every S-bit in bundle 0(1)

IMPL bxx1x Count syllables not dispersed due to implicit stop bits. These
consist of all of the non-architected stop bits (asymmetry,
oversubscription, implicit). Dispersal takes a 6-syllable
(3-syllable) hit for every implicit stop bits in bundle 0(1).

FE bx1xx Count syllables not dispersed due to front-end not providing
valid bundles or providing valid illegal templates. Dispersal
takes a 3-syllable hit for every invalid bundle or valid illegal
template from front-end. Bundle 1 with front-end fault, is
counted here (3-syllable hit).

MLI b1xxx Count syllables not dispersed due to MLI bundle and
resteers to non-0 syllable. Dispersal takes a 1 syllable hit for
each MLI bundle. Dispersal could take 0-2 syllable hit de
pending on which syllable we re-steer to. Bundle 1 with
front-end fault which is split, is counted here (0-2 syllable
hit).

ALL b1111 Count all syllables not dispersed. NOTE: Any combination
b0000-b1111 is valid.

Table 11-98. Unit Masks for SYLL_OVERCOUNT

Extension PMC.umask
[19:16] Description

— bxx00 (* nothing will be counted *)

EXPL bxx01 Only syllables overcounted in the explicit bucket

IMPL bxx10 Only syllables overcounted in the implicit bucket

ALL bxx11 Syllables overcounted in implicit & explicit bucket
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 11-77

Performance Monitor Events
• NOTE: This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

UC_STORES_RETIRED

• Title: Retired Uncacheable Stores

• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y

• Event Code: 0xd0, 0D[��,QF�&\F��2

• Definition: Counts the number of retired uncacheable store instructions. It includes integer,
floating-point, RSE, and uncacheable stores. (only on ports 2 and 3).

• NOTE: This is a restricted set 4 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.
11-78 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Model-Specific and
Optional Features 12

This chapter describes model-specific features for the Itanium 2 processor.

12.1 Memory Attributes

Uncacheable Exported (UCE) is an optional feature of the Itanium architecture. The Itanium 2
processor supports WB, UC, and WC memory attributes. The UCE memory attribute is also
supported, except with semaphore operations. Semaphore operations to a UCE page will fault.
Otherwise, a UCE memory attribute can be used, but will behave as a UC attribute.

For more information regarding UCE behavior, please refer to Section 4.4, “Memory Attributes” of
the Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture.

12.2 Purge Behavior of ptc.e

Purge behavior is model-specific. The Itanium 2 processor supports the following page sizes for
purges or inserts:

• 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and 4G.

A ptc.e will cause all translation caches of all data and instruction TLB levels to be flushed in a
single iteration.

12.3 Data Debug Break

The architecture gives freedom with the data debug break behavior. The Itanium 2 processor takes
a data debug break fault on any memory access that crosses a 16 byte boundary when data
breakpoints are enabled. This break occurs without regard to any addresses currently in the data
debug break registers.

12.4 CPUID Values

On the Itanium 2 processor, the CPUID register contains the following processor identification
information:

• CPUID registers 0 and 1 specify a vendor name, in ASCII, for the processor implementation.

• CPUID register 2 is an ignored register (reads from this register return zero).

• CPUID register 3 contains several fields indicating version information related to the
processor implementation. Table 12-1 and Table 12-2 specify the definitions of each field. For
revision information, please see the Itanium 2 processor specification.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 12-1

Model-Specific and Optional Features
• CPUID register 4 provides general application-level information about processor features. As
shown in Table 12-3, it is a set of flag bits used to indicate if a given feature is supported in the
processor model.

Table 12-4 provides information on how to decode return values of the IA-32 CPUID instruction
for the Itanium 2 processor’s caches.

Table 12-1. Itanium® 2 Processor CPUID Register 3 Values

Bit Field Value Description

7:0 0x04 Number of supported CPUID registers

15:8 — Processor revision

23:16 — Processor model

31:24 — Processor family

39:32 0x00 Architectural revision

63:40 0x00 Reserved

Table 12-2. Itanium® 2 Processor Family and Model Values

Family Model Description

0x07 0x00 Itanium® Processor

0x1f 0x00 Itanium 2 Processor (1.5M) or

Itanium 2 Processor (1 GHz, 3M)

0x1f 0x01 Itanium 2 Processor (1.30 GHz, 3M) or

Itanium 2 Processor (4 M) or

Itanium 2 Processor (6 M) or

Low Voltage Itanium 2 Processor

Table 12-3. Itanium® 2 Processor CPUID Register 4 Values

Field Bits Description

lb 0 Indicates brl instruction is implemented; OS does not need to
emulate it.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5,
“Deferral of Speculative Load Faults” of the Intel® Itanium®
Architecture Software Developer’s Manual, Volume 2: System
Architecture.

ao 2 Processor implements 16-byte atomic operations (see “ld–Load”,
“st–Store”, and “cmpxchg–Compare and Exchange” instructions
in Volume 3: Instruction Set Reference of the Intel® Itanium®
Architecture Software Developer’s Manual.

rv 63:3 Reserved.

Table 12-4. Encoding of IA-32 CPUID Cache Return Values

Return Value Cache Description

0x67 L1D: 16KB 4-way, 64B line size

0x77 L1I: 16KB 4-way, 64B line size

0x7e L2: 256KB 8-way, 128B line size

0x8d L3: 3MB 12-way, 128B line size
12-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Itanium® 2 Processor Pipeline A

The core pipeline is eight stages deep, with some other micropipelines working asynchronously to
the core pipeline.

A.1 Core Pipeline

The core pipeline is separated into a front-end (FE) and a back-end (BE). The FE and BE are
separated by an instruction buffer (IB).

The core pipeline consists of eight stages:

IPG: Instruction pointer generation

ROT: instruction rotation

EXP: Instruction template decode, expand, and disperse

REN: Rename (for register stack and rotating registers) and decode

REG: Register file read

EXE: ALU execution

DET: Last stage for exception detection

WRB: Write back

A.2 Pipeline Stages

A.2.1 IPG STAGE

The Instruction Pointer Generation (IPG) stage delivers an instruction pointer to the L1I. The value
of the instruction pointer may come from one of several places: corrected target or fall through
address (to correct branch misprediction), the address of exception handler in case of exceptions,
static and dynamically predicted addresses, or the next sequential address. During this stage, the
L1I, ISB, and L1 ITLB are accessed.

The L1I to IPG interface always aligns the bundle-pair on even bundle (i.e. 32 byte) address
boundaries. A branch that targets a bundle on an odd boundary bundle will fetch the bundle-pair
from the lower even-bundle address. As a consequence, only 1 useful bundle (instead of the
maximum of two) will be delivered to IPG at such a branch target.

Figure A-1. Core Pipeline of the Itanium® 2 Processor

IPG ROT EXP REN REG EXE DET

Back-End (BE)Front-End (FE)

Instruction Buffer (IB)

WRB
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization A-1

Itanium® 2 Processor Pipeline
A.2.2 ROT STAGE

The Rotate (ROT) stage reads out the four ways of the instruction cache array and the ISB data and
selects the correct way. Fetched instructions are rotated in order to align them for use in the EXP
stage. This is necessary since the instruction disperse and decode unit in the EXP stage will look at
two bundles to decide whether to issue zero, one, or two bundles from the rotation buffer.
Therefore, there is a need to properly align the instructions in the rotation buffer since the decode
unit always assumes that bundle 0 contains the leading instruction.

A.2.3 EXP STAGE

The Expand (EXP) stage decodes instruction templates and disperses up to 6 instructions to
functional units. Due to resource constraints (such constraints are discussed in the next section),
some fetched bundles may not get fully dispatched. These fetched but not dispatched bundles are
“pushed back” into the IB. The number of bundles consumed by the EXP stage is fed back to the
rotate buffer to determine which bundles to be presented to EXP stage the next cycle.

A.2.4 REN STAGE

The Rename (REN) stage translates virtual registers into physical registers by adding their values
to the stack frame base and the rotating register base. Instruction decoding also occurs at this stage.

A.2.5 REG Stage

The Register Read (REG) stage delivers operands to all execution units. The data read is fed into a
set of bypass muxes. There are two levels of bypass muxes. Data read from the register files and
results from the DET and WRB stage are sent to the early bypass. Data generated from the current
EXE stage and load data is fed into the late bypass muxes. Register and dynamic resource hazards
are detected and issue is stalled if necessary. RSE loads and stores are injected in the pipeline in the
REG stage.

A.2.6 EXE Stage

The Execution (EXE) stage is the ALU execution stage. Single cycle latency operations feed results
to the late bypass muxes by the end of this stage, for use by subsequent integer ALU operations.

A.2.7 DET Stage

The Detection (DET) stage is the last stage where exception detection can occur. By the end of the
DET stage, all potential exceptions are known in time to kill the write back of architectural state.
Branch validation for incorrect branch direction is also handled at this stage. If a branch is
mispredicted, (either because the prediction of predicate is wrong or the predicted target address is
wrong), the actual resteer of the next IP address occurs at this stage. So a branch misprediction can
cause six cycles of pipeline bubbles.

A.2.8 WRB Stage

The Write Back (WRB) stage writes results back to register files. Once an instruction completes the
WRB stage, it is guaranteed to update the architectural processor-state.
A-2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Itanium® 2 Processor Pipeline
A.3 Instruction Buffer (IB)

The main pipeline is decoupled between the ROT and EXP pipeline stages. The first two stages
belong to the Front-End (FE), and the remaining six stages are the Back-End (BE). The Instruction
Buffer (IB), a decoupling queue, links together the FE and the BE. This IB can hold 4 bundle-pairs
(24 instructions). With the IB, the FE and the BE can work independently. Hence, instruction cache
miss delays and taken branch penalties may be hidden by execution stalls incurred in the BE.

A.4 Micro-Pipelines

A.4.1 FPU Micro-Pipeline

The FPU pipeline is four stages deep (FP1 to FP4), with write back performed in the fifth stage
(FWB). The FPU is fully pipelined. In the FP1 stage, an early examination of the numeric operands
is performed to determine if the instruction can be numeric exception free.

A.4.2 L1D Micro-Pipeline

In the L1M stage, the L1 data, tag and the L1 DTLB are accessed in parallel and deliver data to the
execution units.

A.4.3 L2 Micro-Pipeline

The first stage is used for L2 TLB accesses. The L2A stage arbitrates for the data array accesses.
Demand fetches for instructions have the highest priority, followed by loads and prefetches. Data
array access occurs in the L2M stage. The L2D stage is for way selection, and data delivery. The
L2C stage is used for correction of ECC errors and for error detection.

Table A-1. FPU Pipeline

Core Pipeline REG EXE DET WRB

FPU Pipeline FP1 FP2 FP3 FP4 FWB

Table A-2. L1D Micro-Pipeline

Core Pipeline REN REG EXE DET WRB

L1D Pipeline L1I L1M L1D WRB

Table A-3. L2 Micro-Pipeline

Core Pipeline REG EXE DET WRB

L2 Pipeline L2L L2A L2M L2D L2C L2W
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization A-3

Itanium® 2 Processor Pipeline
A-4 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

	1 About this Manual
	1.1 Overview
	1.2 Contents
	1.3 Terminology
	1.4 Related Documentation
	1.5 Revision History

	2 Itanium® 2 Processor Enhancements
	2.1 Implemented Instructions
	2.2 Functional Units and Issue Rules
	2.3 Operation Latencies
	2.4 Data Operations
	2.4.1 Data Speculation and the ALAT
	2.4.2 Data Alignment
	2.4.3 Control Speculation

	2.5 Memory Hierarchy
	2.6 Branch Prediction
	2.7 Instruction Prefetching

	3 Functional Units and Issue Rules
	3.1 Execution Model
	3.2 Number and Types of Functional Units
	3.3 Instruction Slot to Functional Unit Mapping
	3.3.1 Execution Width
	3.3.2 Dispersal Rules
	3.3.3 Split Issue and Bundle Types

	4 Latencies and Bypasses
	4.1 Control and Data Speculation Penalties
	4.2 Branch Related Latencies and Penalties
	4.3 Latencies for OS Related Instructions

	5 Data Operations
	5.1 Data Speculation and the ALAT
	5.1.1 Allocation/Replacement Policy
	5.1.2 Rules and Special Cases

	5.2 Speculative and Predicated Loads/Stores
	5.3 Floating-Point Loads
	5.4 Data Cache Prefetching and Load Hints
	5.4.1 lfetch Implementation
	5.4.2 Load Temporal Locality Completers

	5.5 Data Alignment
	5.6 Write Coalescing
	5.6.1 WC Buffer Eviction Conditions
	5.6.2 WC Buffer Flushing Behavior

	5.7 Register Stack Engine

	6 Memory Subsystem
	6.1 Translation Lookaside Buffers
	6.1.1 Instruction TLBs
	6.1.2 Data TLBs

	6.2 Hardware Page Walker
	6.3 Cache Summary
	6.4 First-Level Instruction Cache
	6.5 Instruction Stream Buffer
	6.6 First-Level Data Cache
	6.6.1 L1D Loads
	6.6.2 L1D Stores
	6.6.3 L1D Load and Store Considerations
	6.6.4 L1D Misses

	6.7 Second-Level Unified Cache
	6.7.1 L1D Requests to L2
	6.7.2 L2 OzQ
	6.7.3 L2 Cancels
	6.7.4 L2 Recirculate
	6.7.5 Memory Ordering
	6.7.6 L2 Instruction Prefetch FIFO
	6.7.7 L2 Load and Store Considerations

	6.8 System Bus/L3 Interactions
	6.9 Third-Level Unified Cache
	6.10 System Bus

	7 Branch Instructions and Branch Prediction
	7.1 Branch Prediction Hints
	7.2 Indirect Branches
	7.3 Perfect Loop Prediction

	8 Instruction Prefetching
	8.1 Streaming Prefetching
	8.2 Hint Prefetching
	8.3 Prefetch Flush Hints
	8.4 The brl Instruction

	9 Optimizing for the Itanium® 2 Processor
	9.1 Hints for Scheduling
	9.2 Optimal Use of lfetch
	9.3 Data Streaming
	9.3.1 Floating-Point Data Streams
	9.3.2 Integer Data Streams
	9.3.3 Store Data Streams

	9.4 Control and Data Speculation
	9.5 Known L2 Miss Bundle Placement
	9.6 Avoid Known L2 Cancel and Recirculate Conditions
	9.7 Instruction Bundling
	9.8 Branches
	9.8.1 Single Cycle Branches
	9.8.2 Perfect Loop Prediction
	9.8.3 Branch Targets

	10 Performance Monitoring
	10.1 Introduction
	10.2 Performance Monitor Programming Models
	10.2.1 Workload Characterization
	10.2.2 Profiling
	10.2.3 Event Qualification
	10.2.4 References

	10.3 Performance Monitor State
	10.3.1 Performance Monitor Control and Accessibility
	10.3.2 Performance Counter Registers
	10.3.3 Performance Monitor Overflow Status Registers (PMC0,1,2,3)
	10.3.4 Opcode Match Check (PMC8,9,15)
	10.3.5 Instruction Address Range Matching
	10.3.6 Data Address Range Matching (PMC13)
	10.3.7 Event Address Registers (PMC10,11/PMD0,1,2,3,17)
	10.3.8 Data EAR (PMC11, PMD2,3,17)
	10.3.9 Branch Trace Buffer
	10.3.10 Interrupts
	10.3.11 Processor Reset, PAL Calls, and Low Power State

	11 Performance Monitor Events
	11.1 Introduction
	11.2 Categorization of Events
	11.3 Basic Events
	11.4 Instruction Dispersal Events
	11.5 Instruction Execution Events
	11.6 Stall Events
	11.7 Branch Events
	11.8 Memory Hierarchy
	11.8.1 L1 Instruction Cache and Prefetch Events
	11.8.2 L1 Data Cache Events
	11.8.3 L2 Unified Cache Events
	11.8.4 L3 Cache Events

	11.9 System Events
	11.10 TLB Events
	11.11 System Bus Events
	11.12 RSE Events
	11.13 Performance Monitors Ordered by Event Code
	11.14 Performance Monitor Event List

	12 Model-Specific and Optional Features
	12.1 Memory Attributes
	12.2 Purge Behavior of ptc.e
	12.3 Data Debug Break
	12.4 CPUID Values

	A Itanium® 2 Processor Pipeline
	A.1 Core Pipeline
	A.2 Pipeline Stages
	A.2.1 IPG STAGE
	A.2.2 ROT STAGE
	A.2.3 EXP STAGE
	A.2.4 REN STAGE
	A.2.5 REG Stage
	A.2.6 EXE Stage
	A.2.7 DET Stage
	A.2.8 WRB Stage

	A.3 Instruction Buffer (IB)
	A.4 Micro-Pipelines
	A.4.1 FPU Micro-Pipeline
	A.4.2 L1D Micro-Pipeline
	A.4.3 L2 Micro-Pipeline

