
JBug11 - Version 5

Manual

2

This page intentionally left blank

3

CONTENTS

1 INTRODUCTION . 7
1.1 The Program . 7
1.2 This Manual . 7
1.3 Hardware . 7
1.4 JBug11 Source Code . 7
1.5 Philosophy . 8

1.5.1 Keyboard Input . 8
1.5.2 Default Hexadecimal Number Entry . 8
1.5.3 Screen Appearance . 8
1.5.4 Command Syntax . 8

1.6 Development History . 8
1.7 Getting Started . 9
1.8 Note on the Author . 9
1.9 An Appeal . 9

2 MISCELLANEOUS . 10
2.1 Installing . 10
2.2 Uninstalling . 10
2.3 Registry Entries . 10
2.4 Project Files . 10
2.5 Supporting Files . 11
2.6 Remote Reset . 11
2.7 General-Purpose Switching . 12
2.8 Local and MCU-controlled Memory . 12
2.9 Accessing Expansion Memory . 12
2.10 Importing Configurations from Version 4.x . 12
2.11 USB-to-Serial Adapters . 13

3 TALKERS . 14
3.1 Introduction . 14
3.2 Talker Overlay Files . 15
3.3 Activating the Talker . 16
3.4 Baud Rates . 17
3.5 Talker Map Files . 18

4 MEMORY MANAGEMENT . 20
4.1 Writing to MCU-Controlled RAM . 20
4.2 Writing On-chip EPROM and EEPROM . 20
4.3 Writing to EEPROM . 20
4.4 Managing the BPROT Register . 21
4.5 EEPROM mapping . 21
4.6 Writing to EPROM . 22
4.7 Writing External Memory . 23
4.8 Accessing Indirect Memory . 23
4.9 Memory Map Display . 23

5 DEBUGGING . 24
5.1 Breakpoints . 24

4

5.2 Setting and Clearing Breakpoints . 24
5.3 Tracing in EEPROM . 25
5.4 SWI in user code . 25
5.5 Illegal opcodes in user code . 26

6 PROGRAM FEATURES . 27
6.1 Screen Layout . 27
6.2 Main Menu . 28
6.3 Speedbuttons . 28
6.4 Output Window . 28
6.5 Command History Window . 29
6.6 Command Edit Box . 29
6.7 Status Line . 30
6.8 Information Sidebar . 30

6.8.1 CPU Registers Display . 30
6.8.2 T/G and L/U addresses . 30
6.8.3 Start / Break Points . 31
6.8.4 Watch Window . 32

6.9 Add to Watch . 32
6.10 File Menu . 33
6.11 View Menu . 33
6.12 Actions Menu . 34
6.13 Macro Menu . 35
6.14 Settings Menu . 36
6.15 Help Menu . 36
6.16 Keyboard Shortcuts . 36
6.17 Symbol Table/Register Display . 37
6.18 Base Converter . 37

7 CONFIGURATION . 38
7.1 Settings Dialog . 38
7.2 Settings>General . 38
7.3 Settings>COM Port . 40
7.4 Settings>Macros . 42
7.5 Settings>Debug . 43
7.6 Settings>Talkers . 45
7.7 Settings>Overlays . 47
7.8 Settings>Memory . 48
7.9 Settings>Notes . 50
7.10 Settings>Ind Mem . 50

8 COMMANDS . 52
8.1 General information . 52
8.2 Path Tokens . 53
8.3 Labels instead of Addresses . 54
8.4 PCbug11-style Alternative Commands . 55
8.5 Set Breakpoints . 56
8.6 Set Pass Breakpoint . 56
8.7 Clear Breakpoints . 57
8.8 Clear Output Window . 57

5

8.9 Clear Local Memory . 57
8.10 Compare Memory . 58
8.11 Alter CONFIG . 59
8.12 Connect / Disconnect . 60
8.13 Cyclic Redundancy Check . 61
8.14 Duplicate Memory . 63
8.15 Bulk Erase EEPROM . 63
8.16 Fill Memory . 64
8.17 Find Bytes . 65
8.18 Find Next . 66
8.19 Go (Run) . 67
8.20 List Memory . 68
8.21 Load Memory . 69
8.22 List Macros . 70
8.23 Modify Memory . 71
8.24 Pause & Wait . 72
8.25 Register Display and Change . 73
8.26 Reset . 74
8.27 Reset Pass Count . 74
8.28 Save Memory . 75
8.29 Stop . 76
8.30 Launch Terminal Window . 76
8.31 Trace . 77
8.32 Step Over . 78
8.33 Switch . 79
8.34 Unassemble . 80
8.35 Using a Symbol Table . 81
8.36 Verify . 83
8.37 Verify Erase . 84
8.38 Indirect Memory Commands . 85

9 AUTOMATION . 86
9.1 Introduction . 86
9.2 Macros . 86
9.3 Boot Script . 87
9.4 Autostart Macro . 88
9.5 Replaceable Parameters . 88
9.6 Playing and Recording Macros . 89

9.6.1 Playing . 89
9.6.2 Recording . 89
9.6.3 Stopping Playing or Recording . 90

9.7 Macro Editor . 90

10 TERMINAL WINDOW . 92
10.1 Introduction . 92
10.2 Window Layout and Features . 92
10.3 Interaction with the Monitoring/Debugging Functions 93
10.4 Terminal Window Menu Items . 94
10.5 Terminal Window Settings . 95
10.6 Terminal Demonstration Program . 96

6

11 ERRORS . 97
11.1 Communication and Echo Errors . 97

11.1.1 Comms Error . 97
11.1.2 Echo Error . 97

11.2 Diagnostics . 98
11.3 Error Report . 98
11.4 Command Line Errors . 98

APPENDIX A - ACKNOWLEDGMENTS . 99

APPENDIX B - HARDWARE . 100

APPENDIX C - COMMAND SUMMARY . 102

APPENDIX D - SETUP FOR DIFFERENT MCU’s . 104

APPENDIX E - COMMAND-LINE ERROR MESSAGE SUMMARY 108

APPENDIX F - RS232 COMMUNICATIONS . 112

APPENDIX G - GETTING STARTED and QUICK TOUR . 116

APPENDIX H - DISTRIBUTION FILES . 121

APPENDIX J - JBUG11 REVISION HISTORY & KNOWN BUGS 125

APPENDIX K - CHANGES: Version 4 to Version 5 . 126

Note: All Trade Marks and Trade Names mentioned in this manual are, and remain, the
property of their respective owners.

7

1 INTRODUCTION

1.1 The Program

JBug11 is a monitor and debugger for developing assembly language programs on the Freescale
(Motorola) 68HC11 series of micro-controllers (MCU). It is designed to be used on a personal
computer running one of the Microsoft Win32 operating systems, and to communicate with the micro-
controller under test by means of an RS232 serial link from one of the PC's serial communications
ports. This program owes a lot to PCbug11 which was written by Motorola in the days of MS-DOS
computers. Its development was originally inspired by the difficulty of running PCbug11 on modern
fast processors; at the same time it provides some of the features expected in a modern GUI
environment, and some additional de-bugging tools.

It has been tested with MC68HC11D0, MC68HC11E1 and MC68HC811E2 chips, running at an E-
clock rate of 2MHz, and with the MC68HC11F1 chip running at 4MHz. It has been tested with the
Windows 98SE, Windows 2000 and Windows XP operating systems. I believe that there should be
no difficulty with other Microsoft Win32 OS, or with most other chips in the 68HC11 series, but all
feedback on these aspects would be very welcome.

1.2 This Manual

The Manual is laid out in the following chapters:

• Introduction
• Miscellaneous
• Talkers
• Memory Management
• Debugging
• Program Features
• Configuration
• Commands
• Automation
• The Terminal Window
• Errors
• Appendices

1.3 Hardware

Development of this program was carried out with the micro-controller mounted in a Finger Board
II. This is a small printed circuit support board produced by Embedded Acquisition Systems of
Michigan. It has also been tested with Marvin Green's BotBoard+, the MicroStamp11 by
Technological Arts, and the F1 Controller Board by Pete Dunster. See Appendix B for a typical
hardware layout.

1.4 JBug11 Source Code

JBug11 is written in Object Pascal as implemented by Borland, in my case in Delphi version 4. Two
additional components are used in JBug11 which are not natively present in my Standard copy of
Delphi 4: The chief one is the comms port component and for this I've used the one developed by
Dejan Crnila which is available as freeware on the SourceForge site. The other is an extended combo

8

box available from the Tory’s Delphi site. The JBug11 source code is available from my web site if you
wish to tinker.

1.5 Philosophy

1.5.1 Keyboard Input

JBug11, although using the usual graphical interface, is not designed to be primarily mouse-driven.
This is because my own experience of assembly language programming and debugging is that it calls
for continuous use of the keyboard.

1.5.2 Default Hexadecimal Number Entry

I have also made the decision that, with very few exceptions, it is much easier to work all the time in
hexadecimal. For this reason all commands default to expecting their data in hexadecimal (there is one
exception where specifying a number of repeats - see the Unassemble command on page 80 for an
example). Values may, however, also be input in decimal and in binary by the use of prefixes.

1.5.3 Screen Appearance

The actual GUI appearance of JBug11 is loosely based on the on-screen appearance of Motorola's
PCbug11. The extra resolution available with a modern graphical user interface has meant that certain
features such as the breakpoint display may be permanently on view. The main form may be resized
by dragging, and restored to one of three 'standard' sizes by clicking the menu item under View.
Whatever size and layout the form has when it is closed will be remembered in the Windows Registry
until next time. The Registry also stores the position and size of subsidiary windows opened as part
of the program.

1.5.4 Command Syntax

Some of you may wonder why I didn't stick to exactly the same command syntax that Motorola uses
in PCbug11. I've no one single answer to this: I used to use a debugger on CPM machines which had
much shorter commands, DEBUG.COM for the PC under MSDOS has some neat syntactical features
(and one-letter commands). I've tried to make a combination of the best features of the debuggers that
I'm familiar with. In the end it comes down to personal pride and the 'not invented here' syndrome. If
you download the source code, you can modify the program to accept any command mnemonics you
like. Most PCbug11 commands are, in fact, accepted.

1.6 Development History

Development of JBug11 began around June 2000, with the first public release of version 1.0 in
November of that year. This early version used different talkers for writing to RAM, EEPROM and
EPROM and the correct talker had to be booted for each type of memory. Version 2, introduced in
March 2002, only used the one talker, and wrote to EEPROM and EPROM by laboriously writing the
various bits in PPROG using the read and write routines in the standard talker. It was very slow!
Talker overlay files first appeared in version 3 which was introduced in May 2002. Users, so far, had
had to manage without on-line help, this was introduced in version 4 in December of 2002, with the
last revision in July 2004, bringing the version numbering to 4.5.

9

Way back in 2002, a user had suggested that it would be more sensible to keep configuration
information in files rather than in the Windows Registry. This good idea has had to wait until 2006 to
become incorporated in version 5.0, along with a host of other changes, which I hope will be regarded
as improvements!

There have been so many changes between versions 4xx and 5 that I have put a summary of the more
important ones in Appendix K.

1.7 Getting Started

For those simply wishing to get started as soon as possible, I’ve put the basic installation and operating
instructions in Appendix G.

1.8 Note on the Author

Before you, the reader, complain that the program doesn’t appear to behave exactly as you would like,
or lacks some essential feature, please bear in mind that I’m only a hobby programmer with an interest
in the 68HC11. I’m not working in a commercial environment. The upside of this is that the program
and its source code are freely available, although I would of course much appreciate being told of any
modifications you may make, or criticisms you may have. Let me know at john.beatty@virgin.net

1.9 An Appeal

JBug11 has a large number of features, and may take a little time to set up, particularly if you have not
previously used Motorola’s PCbug11. New users are advised to read the Getting Started section in
Appendix G, and to follow the Quick Tour so as to get a feel for the program.

mailto:john.beatty@virgin.net

10

2 MISCELLANEOUS

2.1 Installing

Double click on the self-installing exe file, named something like ‘Install-JBug11-xyz.exe’ which you
have downloaded from the web site. This is a console application, so will start in a DOS box. You
will be given the chance to change the default installation folder (C:\Program files\JBug11) if you wish
to install it somewhere else.

The installation utility does not also place an icon on the desktop; if want one, you can right click on
JBug11.exe and use the context menu to Send To>Desktop (create shortcut).

2.2 Uninstalling

To uninstall JBug11, use the Windows Add/Remove Programs utility (in the Control Panel). This will
remove the sub-directories of ..\JBug11\ where they have no files in them other than those originally
installed. If you have your own files in, for example, the \Project\ sub-folder, then these will need to
be removed manually.

Uninstalling will not remove the Windows Registry entries, which are managed by JBug11 itself, so
if you need a completely clean machine, and are feeling brave, back up the Windows Registry and then
delete the subkeys:

• HKEY_CURRENT_USER\Software\BeattSoft\Jbug11, and, possibly
• HKEY_USERS\Software\BeattSoft\Jbug11

2.3 Registry Entries

When JBug11 is run for the first time on a new machine it will make an entry in the Windows Registry
under HKEY_CURRENT_USER as follows:

HKEY_CURRENT_USER\Software\BeattSoft\Jbug11\5.x

This key will contain sub-keys that store information on the on-screen layout of the program, and on
general user preferences. The value names correspond to the variables which may be altered in the
Settings dialog.

2.4 Project Files

JBug11 stores the settings peculiar to each project in Project Files. These are plain-text files somewhat
similar to old-fashioned Windows 'INI' files. They have the extension '.jbp', and this extension may be
associated with JBug11 so that double-clicking a project file will open it in JBug11.

11

2.5 Supporting Files

To be fully operational, JBug11 needs access to various supporting files of information. These are:

1. The binary data for the talker (unless using an EEPROM-resident talker). Example name:
Talk_E.BOO This file must be accessible each time the MCU is re-booted with a RAM talker.

2. A map file of addresses within the talker. Example name: Talk_A.MAP This file must be
available whatever kind of talker (RAM or EEPROM-resident) is in use.

3. Talker overlay files in standard Motorola S19 format to enable writing to EEPROM and
programming EPROM or external Flash PROM. Example name: Ovly_Eeprom_A.rec

4. A file of information on all the MCU opcodes. Default name: HC11_Opcodes.csv

This file is used by the Unassemble, Go (Run) and Trace commands to establish and process
break points. It is a text file in comma separated value format prepared directly from
Motorola's published information on the binary codes for each mnemonic of their instruction
set. It may be examined with any text editor (and changed at your own risk!).

5. A file of information on the MCU control registers. Example name: Regs_HC11E9.csv

This file is used by the Register Display and Change command, as well as internally by JBug11.
These files have been prepared from the published Motorola documentation and may be
examined in any text editor.

6. A file of default data on the various MCU's in the HC11 series. It includes default memory map
information, talker file names and control register file names. The file has the name:
MCUData.cfg. The file may be edited, or added to, in any text editor, provided that the
expected format is adhered to.

A full listing of the files in the distribution is in Appendix H.

2.6 Remote Reset

Some target development boards allow the MCU to be reset remotely from the host PC running
JBug11, and this can save some time and frustration in program development. To make this possible,
it is necessary to run a wire from one of the COM port control pins, either DTR (Data Terminal
Ready) or RTS (Ready To Send) via some simple interface logic to the MCU reset pin; details are
shown in Appendix B - Hardware. When JBug11 requires to reset the MCU, it toggles the polarity
on the appropriate pin. See Settings>COM Port for information on setting up the toggles. A remote
reset capability is a luxury - JBug11 works perfectly well without it.

Note that Motorola's PCbug11 had a 'RESET' instruction which could do a reset via the clock monitor
fail detector, without the need for additional wiring. But to succeed, the talker and communication link
had still to be synchronized, and as the usual reason for a reset is because of trouble with just these
two things, it appeared to me more trouble than it was worth.

12

2.7 General-Purpose Switching

With suitable circuitry on the target board, JBug11 is able to make use of the spare COM port output
line (either DTR or RTS, whichever is not in use by remote reset) as a general-purpose logic output.
If the circuitry is available (see Appendix B - Hardware), then this option may be set up in
Settings>COM Port, and activated using the right-hand speedbutton, or by the Switch command (page
79). For an example of the use of this facility, see Writing to EPROM on page 22.

2.8 Local and MCU-controlled Memory

The whole 64KB memory space of the MCU has its counterpart in a 64KB array of bytes within
JBug11. I refer to the latter array as the local version of MCU memory. It may or may not be an exact
copy of the MCU memory, but is used internally whenever communication of memory contents with
the MCU is required. For example, a command to list MCU memory will initiate a request for the
talker to transmit the required bytes of MCU memory to JBug11 where they will be stored in the
corresponding address locations in the local memory array. From there they will be displayed in the
output window.

It should be noted that it is certainly not the case that the local memory is always a faithful copy of the
MCU controlled memory. In fact, at start-up, the JBug11 local memory is initially filled with zeros.
Only as a result of commands such as L (List) will the local memory become a copy of the MCU
memory. Also, commands which load the MCU with data, such as the command to load a Motorola
S19 file, do so via the local memory, so making the local and MCU memories identical over the range
of addresses covered by the loaded file.

Many commands have a version that affects only the local memory, for example 'LDL' - see Load
Memory on page 69.

2.9 Accessing Expansion Memory

JBug11 relies on the chip being reset in Special Bootstrap Mode. Many actual MCU circuits and
programs make use of memory external to the MCU, and to access this memory it is usually
convenient to switch the chip to Special Test Mode immediately after activating the talker. This is
done by writing the MDA bit in HPRIO to 1, and, for safety, writing the IRV bit to zero; that is to say,
writing $E5 to HPRIO. To do this automatically after the talker is boot-loaded, add the line:

R HPRIO=E5

to the Boot Script in Settings>Macros.

2.10 Importing Configurations from Version 4.x

From the File menu, a dialog is available to import configurations from JBug11 version 4xx into
Version 5. In version 4, configurations were stored in the Windows Registry, while in version 5 they
are stored as plain-text project files (page 10). This dialog is grayed-out if a version 4 of JBug11 was
never installed, or if the Registry entries relating to such a version have been deleted.

13

Using the Import dialog

In Version 5, it is necessary to store the MCU type in the project file and therefore this dialog is
arranged in steps so that the MCU must be selected before the configuration can be saved.

Step 1 The list box on the left of the dialog lists all the stored version 4 configurations. The
top-most item is the configuration with which JBug11 version 4 was last closed; the
other items, if any, are those that were stored in the Registry using the version 4
'Save/Recall' dialog. Select a Version 4xx configuration to save. Preview this
configuration, if necessary, by clicking the 'Preview...' button

Step 2 Choose the appropriate MCU for this configuration from the drop-down list. The save
button is not available until an MCU has been selected.

Step 3 A default project file name will be generated and placed in the edit box. If you are
happy with this, click on the 'Save' button (the file will be saved in the ‘\Projects\’ sub-
folder of the folder containing the JBug11 executable); or select a different file name
or folder with the 'Save As...' button.

Select another configuration to save, or close the Import dialog.

Projects saved via the Import dialog have an automatically-generated note to this effect added to the
project file - see Settings>Notes.

2.11 USB-to-Serial Adapters

Many USB-to-serial adaptors will not work satisfactorily with JBug11 (or with other PC host
programs). This is because they do not recognize the 'break' character emitted by the MCU when
about to boot load a talker. As recognition of this break is critical to the operation of the host PC, such
adaptors are useless.

However, adaptors based on the FTDI chipset appear to work just fine. The author uses a

'US232B/LC USB to RS232 Laptop Companion' from EasySync in the UK:

http://www.easysync.co.uk/products.html

or Saelig in North America:

http://www.saelig.com

FTDI's website is at: http://www.ftdichip.com/index.html

http://www.easysync.co.uk/products.html
http://www.saelig.com
http://www.ftdichip.com/index.html

14

3 TALKERS

3.1 Introduction

As with Motorola's own PCbug11, this program uses a talker - a small program which remains resident
on the micro-controller and which provides basic communication with the PC. This allows all the
sophistication to be built into the PC host program, where storage is effectively unlimited, and keeps
to a minimum the usage of precious memory resources on the MCU.

The talker is interrupt driven in such a way that it takes over control of the MCU whenever the host
PC sends a byte to the MCU. This allows the host to inspect or alter programs even while they are
running on the MCU. The talker may make use of either the SCI or XIRQ interrupt, the latter method
requires a hardware connection between the PD0 and XIRQ\ pins (see Appendix B - Hardware).
Different talkers are provided for the two interrupt methods, ones with the extension .BOO are
designed to work with the SCI interrupt, ones with .XOO are for XIRQ\.

The talker may be located either in internal RAM or in EEPROM or even in external (expansion)
memory provided that the reset vector can be pointed to the start of the talker. In the case of a RAM
based talker, it is uploaded to the MCU each time the MCU is re-booted. A talker in external memory
may require a code fragment to be boot-loaded to get it running, or it may always be present after a
reset. The type of talker should be selected on the Settings>Talkers tab.

If the talker is to work correctly, some or all of the RESET, SCI, XIRQ and SWI vectors will need
to point to talker code. The writing of these vectors is handled by JBug11 using information in talker
map files - see page 18.

The talker resident on the MCU provides five basic communication functions:

1. Reading MCU memory
2. Writing MCU memory
3. Reading the CPU inherent registers (A, B, IX, IY, SP, PC, CCR)
4. Writing the CPU inherent registers
5. Servicing a software interrupt (SWI)

All the features of the monitor/debugger are provided by using one or more of these five functions.
For example, the command to run a program in MCU memory at a particular address is implemented
using the 'Write CPU Register' function with the program counter altered to the desired start address.
The SWI Service function is used in tracing and debugging to signal to JBug11 that a break point has
been reached.

The talkers supplied with JBug11 are identical to the ones supplied by Motorola for use with their
PCbug11. The file Jbug_Talk.asm included in the distribution .zip file has some additional comments
and background information on the working of the talkers, and may be re-assembled for different base
addresses. Note: The talker files all have $FF as their first byte - this is required by the MCU
bootloading firmware to determine which baud rate is being used (see Activating the Talker below).
If you re-assemble a talker and generate an object output, don't forget to add the $FF byte if your
assembler cannot do this automatically.

15

3.2 Talker Overlay Files

The basic RAM-resident talker is able to read all types of memory, both on-chip and external, but can
only write on-chip or external (expansion) RAM.

To write to on-chip EEPROM, to program on-chip EPROM (OTP ROM) and to write to external
memory which requires special writing procedures, such as Flash PROM, supplementary files are used
to overlay the standard talker. These overlays are loaded and unloaded automatically by JBug11 as
and when necessary. Note that writing which requires overlays is slower than writing to RAM, so
external memory should always be declared as RAM if at all possible.

When loaded, they overwrite the functions of the talker which read and write the inherent registers and
which handle breakpoints; none of these functions are needed simultaneously with the reading and
writing of memory. A separate talker is needed for each of the following kinds of memory, which
correspond to the available memory types on the Settings>Memory tab:

• On-chip EEPROM ($02)
• On-chip EPROM (One-time programmable ROM) ($20)
• External Byte-programmable memory (maybe EEPROM) ($42)

(Note that external RAM does NOT need an overlay.)
• External Page-programmable memory (for example: FLASH)

and certain EEPROM where writes are constrained to lie within
one page at a time ($22)

• Indirect Memory Access:
• Read Indirect Memory Register ($31)
• Write Indirect Memory Register ($32)
• Read Indirect Memory ($33)
• Write Indirect Memory ($34)

Each of these overlays has a unique JBug11 command byte, which is shown in brackets in the above
list. Note that a 'talker in other memory' (see Talkers above) is expected to incorporate all the code
which, in a boot-loaded talker, has to go into overlays; within such a talker the various sections of
code may be selected by the unique control bytes.

Overlay files are in standard Motorola S19 record format. In the distribution they are called something
like 'Ovly_Eeprom_A.rec'. The source files are also included, and the comments in these provide an
insight into their operation. Select appropriate overlays on the Settings>Overlays tab.

If you wish to try your hand at adding a new MCU to JBug11's repertoire, you may need to write your
own overlays: if you use external memory with a special write requirement, you will certainly have to
modify the basic overlay source code provided and re-assemble it.

Overlays need to follow the format shown below in order to interact correctly with JBug11.

1. The S19 file containing the overlay has first to alter the bytes at $003E..$0041 in the talker (see
the source file JBug_Talk.asm), to jump to the start of the overlay, and then to fill the space from
$0075 onwards with overlay code. The basic sending and receiving routines in the standard talker are
not overwritten by the overlay, and these routines remain responsible for certain initial actions each
time the overlay is called:

16

2. Reception of the command byte (see above). The one's complement of this byte is then echoed
by the talker back to the PC.

3. Reception of the byte containing the count of the number of bytes to be written. A value of $00
will expect 256 bytes. This byte is not echoed.

4. Reception of the address in memory at which to begin writing bytes, high byte first, followed
by low byte. These bytes are not echoed.

On entry to the overlay routine, ACCA holds the one's complement of the command byte, ACCB holds
the count of bytes to be written, and IX the address of the first memory location to be written. So the
overlay code has then to perform the following:

1. Check that the one's complement of the command byte is correct

2. Do any pre-processing necessary

3. Wait for the first byte (new memory value) to be sent from the host

4. Echo the written byte back to the host.

5. The host PC will then send the remaining bytes, optionally waiting for an echo before sending
the next.

6. Do any post-processing necessary

The overlay for page-written memory can cope with two cases, how it is used depends upon the code
in JBug11:

• Memory such as FLASH where complete pages must be written each time a write takes place,
and

• Memory such as EEPROM where bytes can be written individually, but if more than one byte
is written in any one write operation, then all the bytes must lie within a single memory page.

The overlay must store the bytes to be written in a RAM buffer, and echo them back to the host
immediately. This means that the echo is only of the buffer contents, not of the memory as
programmed, so a subsequent Verify operation is desirable.

As noted near the beginning of this section, JBug11 automatically handles the substitution of the
overlay, and the reinstatement of the talker afterwards. The overlay, being an S19 record format file,
may alter any bytes, not necessarily at contiguous addresses. When about to substitute an overlay,
JBug11 uses the information in the overlay S19 file to read in from the MCU the bytes at the addresses
which will be overlain. These bytes it stores internally (actually as another S19 format file) so that
when the overlay is no longer needed the original memory may be restored.

3.3 Activating the Talker

The talker will usually be located either in RAM or in EEPROM. In both cases the MCU must be
wired to come out of reset in Special Bootstrap Mode, i.e. with the MODA and MODB pins at logic

17

zero. In this mode, the CPU of the MCU runs a bootloader program, located in mask ROM, which
sets up the MCU serial communications interface (SCI) and then emits a break character on the
Transmit Data line (pin PD1). What happens next depends on how the host PC replies.

Host sends $FF character

This is the signal that some form of boot-loading talker is about to be sent, which the MCU will store
in its onboard RAM. The $FF character establishes the bootstrap communication baud rate (see
Freescale documentation, particularly Application Note AN1060, for a description of how this
happens). The talker program may be of any length, up to 512 bytes, but note that for 'A' series (and
the E2) chips it needs to be exactly 257 bytes long (including the $FF). After sending the talker, the
MCU bootloading firmware executes a jump to address $0000 and the talker takes over.

Host replies with a break character

Sending the break character, instead of $FF, causes the MCU to branch to the first byte of EEPROM.
Provided a suitable talker has been loaded starting at this address, it will assume control.

Activating a Talker Without Break Hand-shake

It is possible to send a boot-loading talker, or activate an Eeprom-resident talker, without relying on
the MCU to output a 'break' character. This option may be selected in Settings>General. The
disadvantage of this option is that the user must remember to reset the MCU and then re-boot the
talker in the right sequence, although if remote reset circuitry is in place, single-click rebooting is still
possible.

Note

You may find that it is difficult to upload a boot-loading talker if your computer is busy doing
something else which is CPU-intensive. For example, it may be impossible to get the talker to upload
if your PC is simultaneously downloading a file from the internet. This happens when the pre-emptive
multitasking in Windows takes control away from JBug11 for long enough that the MCU thinks that
the talker uploading is complete before it really is, because more than 4 byte times (at the upload baud
rate) have been allowed to elapse while the operating system has assigned CPU time elsewhere. This
effect is more noticeable at higher upload baud rates.

Talker in external (expansion) memory

If the talker is located in external memory, it may be present immediately after reset, or it may require
a small boot-loaded RAM-resident code fragment to start it. Such a fragment would be activated as
noted above and would then jump to the start of the talker in external memory, possibly carrying out
some initialization first.

3.4 Baud Rates

As a consequence of the boot loading firmware design in the HC11 series microprocessors, two
different baud rates are required to communicate with an MCU, one to boot load the talker, and one
to use subsequently for transfer of bytes to and from the MCU. These rates are selected on the
Settings>COM Port tab.

18

For MCUs using an 8 MHz crystal (E-clock rate of 2 MHz), the default rate is 7812 baud for talker
boot loading and the subsequent general communication rate is 9600 baud. Because 7812 is a non-
standard rate (see below), the boot load firmware on the chip also allows a boot loading rate of 1200
baud. It is the function of the initial $FF character in the talker to set which rate is adopted by the
MCU - see Activating the Talker on page 16. At 1200 baud the talker takes a little over 5 seconds to
load, so the default rate of 7812 would be preferable, if obtainable. The good news is that 7680 baud
appears to be quite acceptable as a substitute for the 7812 baud specified. It demonstrates the extent
to which Motorola went to make the SCI speed-tolerant.

If other crystal frequencies are used, these rates may be pro-rated, for example for a 7.3728 MHz
crystal, the default upload speed would be 7200 baud - which is an exact integer division of 115200
(÷16), and the communication speed would be 8861 baud (115200÷13). See also Appendix D.

Note: not all baud rates are obtainable. On most PC systems the UART is a 16550 compatible device,
and the COM port driver is the standard one that comes with Windows. The result is that the only
baud rates obtainable in practice are those which are integer divisions of 115200 baud, for example
7680 baud is obtainable because 7680 = 115200 ÷15. If a rate somewhere between the available rates
is requested, then the 16550 defaults to the first available rate above the rate entered.

Note that the communication baud rate must be greater than, or (theoretically) equal to, the talker boot
loading baud rate. This is because JBug11 opens the PC's COM port expecting reception at the general
communication rate, and when the MCU emits the break character to initiate loading of the talker, it
does so at the default upload rate - if this is less than the general communication rate then the host PC
will definitely recognize it as a break signal. When about to send the talker, JBug11 switches to the
slower boot loading rate, sends the talker, and then switches back to the general communication rate.

3.5 Talker Map Files

A suitable map file is always needed when tracing or running programs on an MCU, whatever kind
of talker is in use, as it provides information to JBug11 on certain key addresses. Map files are plain
text ASCII files, but they must be formatted in accordance with certain rules to work properly. A
sample is shown below:

Listing of map file: Talk_A.MAP:

* Name of constant must be spelled correctly
* At least one space or tab must separate the name from the value
* Comments must begin with an asterisk in column 1, or a semicolon
*
talker_start $0000 ; Talker code start address
talker_idle $0012 ; Talker code idle loop address
swi_srv $0094 ; Talker's SWI service address for break points
swi_jmp $00F5 ; SWI vector
illop_jmp $00F8 ; Illegal opcode vector

If you use your own talker, for example the one by Al Williams (see Tracing in Eeprom on page 25),
or an EEPROM-resident one, then it is important to ensure that these constants have the correct
values:

talker_start Address to which the bootloader jumps after downloading the talker, if in
RAM, or on receipt of the break character, if in EEPROM.

19

talker_idle Address of the idle loop in the talker which "does nothing" while waiting for
the next instruction. The S (Stop) command writes this value to the program
counter to force program execution into a known state.

swi_srv Address of the SWI service routine within the talker, which is written to the
SWI jump vector at swi_jmp before breakpoints can be handled.

swi_jmp Pseudo vector location in RAM which stores the address of the SWI service
routine. During running or tracing, the two bytes at this and the following
address point to a location within the talker; otherwise they may point to a
user's SWI service routine. If substitution of jumps is enabled (see
Settings>Debug), JBug11 dynamically manages these bytes so that tracing
through a user-placed SWI service routine is possible.

illop_jmp Pseudo vector location in RAM which stores the address of an illegal opcode
service routine. As part of the normal talker loading and initialization, these
bytes are written to point to the start of the talker, so that an illegal opcode
fetched by the CPU will cause the talker to re-start. However, if the user's code
on the MCU incorporates a suitable service routine, this jump location may be
overwritten by the user with the routine entry point, and then JBug11 will
allow tracing through illegal opcodes. See the section Illegal opcodes in user
code on page 26.

Future versions of JBug11 may introduce other constants for particular purposes.

20

4 MEMORY MANAGEMENT

4.1 Writing to MCU-Controlled RAM

The talker resident on the MCU is always able to write directly to on-chip RAM, which includes the
control registers. It can also write to external RAM when in ‘Special Test Mode’; to put the MCU into
this mode it is necessary to set the MDA bit in the HPRIO control register to 1 - see Accessing
Expansion Memory on page 12.

Some forms of external EEPROM can also qualify as RAM, that is their bytes may be randomly
accessed for writing, but a relatively long delay may be needed after each write cycle. This delay may
be achieved by modifying and re-assembling the talker - see the assembly source file Jbug_Talk.asm
included in the distribution and the example Part 1 Talker for the D0 MCU: ‘Talk1_D_MS11.asm’.
Important note: if your talker incorporates this delay, you must tick the ‘Wait for echo on write’
checkbox on the Settings>Talkers tab.

4.2 Writing On-chip EPROM and EEPROM

Writing to EEPROM and programming of EPROM memory provided in the 68HC11 series chips is
carried out transparently by JBug11, subject to certain general conditions, as follows:

• A RAM based talker is running. Writing to EEPROM and EPROM cannot be carried out from
a talker that is already resident in EEPROM or EPROM, although certain talkers, such as the
one by Al Williams, which are mainly EEPROM-resident, can be used to write EEPROM (they
have a small RAM-resident portion, see the section on Tracing in EEPROM on page 25)

• The appropriate talker overlay files are available

• The correct ranges are specified in Settings>Memory

EEPROM and EPROM memory writing is discussed further below.

4.3 Writing to EEPROM

Writing to EEPROM is controlled by the value in the BPROT register, and this must be set
appropriately by the user in advance of any commands which alter EEPROM. JBug11 does not alter
BPROT automatically, although it can warn the user if it detects an inappropriate value. See Managing
the BPROT Register on page 21.

Because writing to EEPROM is carried out transparently by JBug11, all commands which involve
altering MCU memory work in EEPROM the same as they do in RAM (but slower - see below). Even
tracing is possible in EEPROM. The only exception to this is altering CONFIG, see the description
of the Alter CONFIG command on page 59.

Writing to EEPROM is a slower than writing to RAM because:

• The talker overlay file has to be loaded over the standard talker, and the standard talker has
to be reinstated when writing to EEPROM is complete.

21

• To reduce the actual writing time as much as possible, and to keep wear and tear on the
EEPROM memory to a minimum, the overlay implements the following strategy:
• If the byte to be written to EEPROM is the same as the byte already at that address,

no action is taken (no write is necessary)
• If the byte then to be written is not currently $FF, the byte will be erased first.

• Each byte written to previously-erased EEPROM takes approximately 11ms (the actual time
for which the internal programming voltage is present is 10ms for an E-clock rate of 2MHz),
and each byte written to an EEPROM address containing a value other than $FF takes double
this time. For clock crystals other than 8 MHz, the correct programming delay can be achieved
by amending the overlay source code file and re-assembling it.

4.4 Managing the BPROT Register

On most chips in the 68HC11 series, a BPROT register provides some protection against accidental
erasure or change of EEPROM contents. It is the user's responsibility to write the BPROT register to
an appropriate value before attempting a command to modify EEPROM. As an example, the
following macro will un-protect EEPROM, erase all the EEPROM locations, re-protect it, verify that
the memory is erased, and finally list the contents to allow a visual check:

DEFM EraseAll
BEGIN

R BPROT=10
EBULK
R BPROT=1F
VE B600 B7FF ; Address range to suit E1 and E9 chips
L B600 B7FF

END

Provided that 'Show warning on BPROT bits set' is checked on the Settings>General tab, JBug11 will
warn the user if it is about to write to CONFIG or EEPROM and it appears that the value in BPROT
will not allow this to happen. JBug11 checks the PTCON bit in BPROT when about to write to
CONFIG. When about to write to the main block of EEPROM, the check is that all four low-order
bits of BPROT are zero (i.e. BPROT = $10 or $00). This may be unnecessarily restrictive, as these
bits control different parts of the block of EEPROM - when the warning appears, the user is given the
option of aborting the operation or carrying on anyway. If the warning is turned off on the Settings
tab, then JBug11 will attempt to carry out the specified operation without checking BPROT at all.
Where no BPROT register is provided, as in the A series chips, no warning message is shown.

4.5 EEPROM mapping

On most chips in the 68HC11 series, the EEPROM is at a fixed location ($B600 - $B7FF), but on the
68HC811E2 there is more EEPROM, and it may be located at the top end of any one of the sixteen
4 KB pages in the 64 KB address space, depending on the values programmed into the upper four bits
of the CONFIG register. It is the user's responsibility to ensure that a valid address range is specified
in the EEPROM window of the Settings>Memory dialog. This address range is used by JBug11 to
validate addresses supplied as arguments to commands; and to provide the address required internally
by the Bulk Erase EEPROM command (page 63).

22

4.6 Writing to EPROM

Programming EPROM memory, where present, is carried out transparently by JBug11 provided that
the correct EPROM range is defined in Settings>Memory and that a suitable programming voltage is
available. The LD(Load) command works in EPROM the same as it does in RAM, but only provided
that the locations to be written are $FF before writing. D(Duplicate), F(Fill), M(Modify Memory) and
T(Trace) commands will not work in EPROM.

Programming EPROM memory areas is slower than writing to RAM. The actual time for which Vpp
is present is 3ms per byte with a 2MHz E-clock rate (8 MHz crystal), although this can be altered if
you re-assemble the appropriate talker overlay file: Ovly_Eprom_X.asm.

JBug11 can optionally display a warning when about to program EPROM so that the operator can
check that the programming voltage, Vpp, is present on the chip. At the end of the programming
operation, another warning dialog alerts the operator that the voltage may be disconnected. These
warnings may be enabled or disabled on the Settings>General tab.

The general-purpose switch output may be used to automatically switch the programming voltage,
Vpp, on and off, using a macro, and provided suitable hardware is available on the target board - see
Appendix B - Hardware. For example, the following macro, which takes a filename as the single
replaceable parameter, will control the application of Vpp:

DEFM ProgEprom @1 ; @1 is an S19 file covering EPROM addresses
BEGIN
 Switch ON
 Pause 100 ; Wait for Vpp to stabilize
 LD @1
 Switch OFF
END

Most chips in the 68HC11 series that have an EPROM area use the ELAT bit in the PPROG register
to switch EPROM in and out of the notional on-board programming socket, but the 711E20 and K
series chips have a separate control register, EPROG, for this job. If you are using one of the latter
chips, you will need to make sure that you have nominated the correct talker overlay file in
Settings>Overlays>'On-chip OTP ROM' overlay.

Note: the EEPROM and EPROM overlay files may need re-assembling if MCU crystal frequencies
other than 8 MHz are used, so that the time delays specified in the data sheets are maintained.

MC68HC711D3

The MC68HC711D3 has too little RAM to be able to use a full talker that can run or trace programs,
but it will accommodate a cut-down talker and overlay so that the EPROM may be programmed even
when expansion memory is not available. There is, in fact, a ROM-resident routine on this chip for
programming EPROM, but it never returns to the talker, the only way to regain control being to reset
the MCU when programming is finished. The JBug11 overlay does not make use of this built-in
routine, and so is able to exit gracefully back to the talker when programming is finished. As supplied,
the overlay is suitable for an MCU running off an 8 MHz crystal and it will need reassembling with a
different time delay factor if another frequency is used.

23

4.7 Writing External Memory

JBug11 can write to most types of external (expansion) memory. Writing to external RAM is as
straightforward as writing to on-chip RAM and is carried out by the routines built into the basic talker.
Writing to some other types can be more involved, and in these cases, JBug11 uses talker overlays
which broadly serve two types of memory:

• External Byte-written Example: Certain kinds of EEPROM, and
• External Page-written Example: FLASH or EEPROM

Because of the wide number of possible memory architectures, the overlays for writing to these kinds
of memory will have to be written and assembled by the user, although two example overlay source
files are included in the \Overlays\ subdirectory. Guidelines are also provided in the section Talker
Overlay Files on page 15.

The JBug11 interface to the overlay that handles page-written memory is 'smart' to the extent that if
the data to be written does not coincide with the data page boundaries, then the current content of the
memory is read and re-written as necessary to make up a full data page. Only data page sizes between
$10 (16 decimal) and $100 (256 decimal) are available.

4.8 Accessing Indirect Memory

As of Version 5.1.0, JBug11 can also read and write some kinds of indirectly-connected memory such
as serial Eeprom. Only a limited set of commands is provided - see Indirect Memory Commands on
page 85. Both reading and writing this kind of memory requires the use of overlays, and provision has
been made for two of these, one for accessing serial memory registers, and one for the serial memory
itself.

Because of the wide number of possible memory architectures, the overlays for reading and writing
these kinds of memory will have to be written and assembled by the user, although two example
overlay source files are included in the \Overlays\ subdirectory, suitable for accessing the Microchip
25LC640 64K SPI Bus serial eeprom. See also the section Talker Overlay Files on page 15.

Writing to serial Eeprom memory is usually constrained to a maximum of a 'page' at a time. Only data
page sizes between $08 (8 decimal) and $100 (256 decimal) are available.

All settings for accessing indirect memory are grouped together on the Settings>Ind Mem tab.

4.9 Memory Map Display

This window displays the memory map for the currently selected MCU. It reflects the data supplied
in Settings>Memory.

The map may be sorted with the 'sort' button either in ascending or descending order.

This window is launched from the View menu, or by the keyboard shortcut Ctrl+M.

24

5 DEBUGGING

5.1 Breakpoints

Tracing, and running programs to breakpoints, requires that breakpoints can be established at the right
places in the MCU program code. The 68HC11 series of microcontrollers do not have a dedicated
breakpoint register, so break points are implemented by substituting an SWI instruction ($3F) for the
opcode at which a break is desired. This means that breakpoints can only be used where memory is
modifiable i.e. in RAM or EEPROM. Tracing proceeds a bit slower in EEPROM because of the
overhead needed to handle EEPROM writing. It should be noted that breakpoints cannot be placed,
nor tracing carried out, in ROM or external Flash memory.

Three types of breakpoint may be set:

• Transient: Transient breakpoints only exist until the program reaches them, after which
they are deleted.

• Fixed: Fixed break points are permanent in the sense that if the MCU program halts
at one of them, and is then resumed from that point, the break point is restored
'behind' the continued program. This requires some processing overhead and
will cause a slight delay in execution time as additional temporary breakpoints
are automatically inserted and deleted.

• Pass: Pass breakpoints are similar to fixed ones except that MCU program execution
does not halt until the breakpoint address has been reached the number of times
specified in a 'trigger' value. Pass points take a considerable processing
overhead, for example, inserting one in a timing loop would render the loop
useless for its original timing purpose, although it may well help to debug it. To
reset the trigger value to zero, use the Reset Pass Count command (page 74)
or the context menu in the Start/Break Points display window (page 31).

The Trace and Step Over commands automatically place a breakpoint as necessary to ‘catch’ the
program after execution of the current instruction. If this happens to be a branch instruction, JBug11
places the next breakpoint by an internal analysis of the CCR register or by additional reads of
memory.

Breakpoints remain set in MCU memory while running or tracing, except at the current stopping point
(otherwise the program would break again as soon as it were set running). All breakpoints are cleared
from memory when the Stop command is given.

5.2 Setting and Clearing Breakpoints

A transient breakpoint or a fixed breakpoint may be set:

• as part of the Go (Run) command, or
• by the Set Breakpoints command.
• by using a right-click context menu within the break point display window, (part of the

Information Sidebar, see page 30).

A pass breakpoint can be set via the context menu or the Set Pass Breakpoint command (page 56).

25

Breakpoints may be cleared by using the right-click context menu in the breakpoint window (page 31),
or by the Clear Breakpoints command (page 57). The Trace command automatically sets and clears
transient breakpoints as necessary.

To reset the pass counts of Fixed and Pass breakpoints, use the Reset Pass Count command (page 74),
or the context menu in the 'Start/Break Points' display.

Note that setting a breakpoint so that it appears in the breakpoint display does not mean that the
breakpoint has been set in MCU-controlled memory as the $3F SWI character. Modification of
memory only happens when a Go (Run), Trace or Step Over command is issued, and memory is
restored to its original contents when the Stop command is given.

If an attempt is made to close the JBug11 program while breakpoints possibly remain set in memory,
a warning dialog is shown.

5.3 Tracing in EEPROM

If breakpoints are to be set in EEPROM, make sure that the BPROT register, where one is provided,
contains a suitable value. Tracing cannot normally be carried out in EEPROM unless a RAM based
talker is running. However, users of the 811E2 chip might like to check out the talker by Al Williams
(go to: http://www.wd5gnr.com/hc11.htm). This talker is mainly in EEPROM, but copies a small
section of code to RAM on start-up which allows it to write EEPROM space transparently to the user
as though it was all RAM. Using this talker, what is actually EEPROM in the chip must be nominated
as RAM in Settings>Memory.

5.4 SWI in user code

The Software Interrupt instruction is allowed in user's own code on the MCU. Tracing through such
an SWI is allowed in the right circumstances:

1. The user code has a suitable service routine, and

2. The entry point of this routine is written to the SWI pseudo-vector jump at $00F5/6, and

3. Vector substitution is enabled in Settings>Debug.

If the above conditions are not met, and a user-placed SWI opcode is encountered while running or
tracing, JBug11 reports with an error message.

Note that the vector at $00F5/6 must be written to point to the user’s service routine in some way
before running or tracing is begun, for example by writing it as part of the loading of the program. As
part of the Run and Trace commands, JBug11 reads the value of the SWI vector (this is why the
constant swi_jmp is needed in the map file) and notes this value internally before substituting its own
SWI service routine (the constant swi_srv). Executing the Stop command restores the user's SWI
vector address. Breakpoints may be placed at user-programmed SWI's, and tracing through such SWI's
is possible. Tracing through user-placed SWI's only works reliably with an .XOO type talker and the
PD0-XIRQ\ connection (see Appendix B - Hardware).

http://www.wd5gnr.com/hc11.htm

26

5.5 Illegal opcodes in user code

Illegal opcodes are sometimes inserted deliberately in user code, for example in some real-time
operating systems. Tracing through an illegal opcode is allowed in the right circumstances:

1. The user code has a suitable service routine, and

2. The entry point of this routine is written to the illegal opcode trap pseudo-vector jump at
$00F8/9, and

3. Vector substitution is enabled in Settings>Debug.

As part of the Run and Trace commands, JBug11 will read the value of the vector (this is why the
constant illop_jmp is in the map file) and notes this value internally so that when an illegal opcode is
encountered during tracing, the action of the MCU on fetching an illegal opcode can be simulated.
Transient, Fixed and Pass type breakpoints may all be set at an illegal opcode.

As with the SWI in User Code described above, the pseudo-vector jump to the user's service routine
must be written before running or tracing begins.

27

6 PROGRAM FEATURES

6.1 Screen Layout

28

6.2 Main Menu

The main menu provides access the various facilities in JBug11. For more details see the individual
menu descriptions later in this chapter.

6.3 Speedbuttons

Nine speedbuttons are provided along the top of the main form to carry out common tasks. From left
to right these are:

Connect Click to carry out the Connect / Disconnect command (page 60), i.e. open or
close the serial (COM) port.

Reset Click to carry out the Reset command (page 74). This button will be grayed-
out if remote resetting is not available.

Load S19 File Click to carry out the Load Memory command (page 69). This button is
grayed-out unless a talker is loaded, and the status line reads 'Stopped'.

Save MCU Memory Click to carry out the Save Memory command (page 75). Grayed-out as above.

Play Macro Click to play the last macro selected from the drop-down list. If a macro is
already playing, click this button again to stop it (or use the Stop button).

Record Macro Click to begin recording a macro. If a macro is being recorded, click this
button again to stop recording (or use the Stop button).

Stop Click to stop a macro playing or recording.

Edit Macro Click to open the Macro Editor. (See page 90)

Switch Click to operate the remote switch, see General-Purpose Switching on page
12. This button is only available if remote mode switching is enabled - and this
requires the necessary hardware on the target board.

6.4 Output Window

Displays commands and their results. Also miscellaneous information, such as diagnostic information
following communication errors.

The division between the output and command history windows is a moveable splitter bar, allowing
one window to be enlarged or reduced at the expense of the other. Word wrap may be enabled in this
window.

A right-click context menu is available within the Output Window. This provides:

• Select All
• Copy
• Clear All
• Word Wrap

29

6.5 Command History Window

Displays a list of all the commands issued during the use of the program.

A command shown here may be re-used by:

• clicking on it, whereupon it will replace whatever currently appears in the Command Edit Box,
or by

• double clicking, when it will be executed immediately, or by

• using the up and down arrow keys while the Command Edit Box has focus; this will recall a
previous command in the same way that was possible in PCbug11.

Note that if a previously issued command is selected, it will be transferred to the Command Edit Box
without any comment that may have been added (see Commands on page 52 for an explanation of the
addition of comments).

A right-click context menu is available within the Command History Window. This provides:

Select All

Copy

Copy to Macro Editor Click to append any selected text to the current macro library, and
open the Macro Editor (see page 90).

Help on Error Message If a previous command has resulted in an error message in the
Command History Window, of the type that begins with an arrow:
<--, and this line has been highlighted by left-clicking on it, than this
menu item will open on-line help at the relevant topic. This menu item
is not available if more than one line has been highlighted or the line
does not have an error.

6.6 Command Edit Box

This is a standard Windows edit box for the typing-in of commands. It is designed to be the main point
of user interaction with JBug11. Pressing the Enter or Return key while this box has focus initiates the
following events:

1. The command is parsed and checked for syntactical correctness. If incorrect, an explanatory
message is appended to the command.

2. The command is copied to the command history list and to the output window, where it
appears in green type.

3. If the command is correctly formatted, it is executed and the results, if any, will appear in the
Output Window and in the Information Sidebar displays, as appropriate.

Pressing the escape key while this box has focus will clear its contents, and stop any macro playing or
recording.

30

6.7 Status Line

This is divided into three panels as follows (from the left):

1. General program state

This panel will display one of the following messages depending on the currently executing command:

Invalid project data (check ''Settings'')
Disconnected
Connected
Stopped
Running
Running - stopped at breakpoint
Tracing
Tracing - stopped at breakpoint

2. Info

This panel shows which type of talker is currently running, RAM-resident, EEPROM-resident or in
ROM/expansion memory

3. Progress Bar

This is a standard windows progress bar which shows the progress of operations that involve the
transfer of bytes to or from the MCU.

6.8 Information Sidebar

The right-hand side of the JBug11 main form is given over to a display of various items of information
useful when tracing and running programs on the MCU. Resize this area using the vertical splitter bar.
From top to bottom, information is displayed as follows:

6.8.1 CPU Registers Display

When stopped, or stopped at a breakpoint, this panel shows the values in the CPU registers. The
values for SP, A, B, IX and IY may be edited directly in their respective boxes, and the new value will
take effect when running or tracing recommences. A flag in the CCR may be edited by double-clicking
it, when it will change sign. The program counter PC is not editable; the only way to change PC is to
give a Go(Run) or Trace command with the desired starting value.

6.8.2 T/G and L/U addresses

These are two addresses maintained internally by JBug11:

• The T/G address show where Tracing and Running will next begin in the absence of a specific
address.

• The L/U address shows where Listing or Unassembling will begin in the absence of a specific
address.

31

Suppose a file to be loaded at $8000 and the following Trace command given:

T 8000

then tracing will commence at 8000 (hex), and when tracing stops at the next breakpoint, the value
of the T/G address will be updated to show the break point address. Simply pressing the <Enter> key
will then trace the next instruction. The L/U address also tracks the breakpoint, so if the program were
paused at a breakpoint, say $8003, then issuing the command:

U3

would unassemble the next three instructions, altering L/U to the address immediately after the
operands of the third instruction, but leaving T/G unchanged, so that typing

T

would resume tracing where it was previously left off.

6.8.3 Start / Break Points

Displays breakpoint information. When running or tracing, the top line in this window shows the
instruction at the starting address in brackets and in green, followed by a list of the currently set break
points. Transient, Fixed and Pass breakpoints are prefixed with T, X and P respectively. If the MCU
is halted at one of the listed break points, then that line is displayed in red type, followed by a line
showing where the program would go next if another trace command is given. If halted at a branch
instruction, then this line will display two addresses, the sequential one first and then the branch
address. Whichever is the current destination will be highlighted in bold.

Following fixed breakpoints is a figure in brackets which shows the number of times program
execution has passed this point. Following pass breakpoints, two figures appear, the first as for fixed
breakpoints, and the second, after the slash, shows the 'trigger' value.

A right-click context menu is available in this display, with the following items:

Add... Opens a dialog for the addition of breakpoints.

Delete Deletes a selected breakpoint

Clear All Deletes all breakpoints

Reset Pass Counts Resets all the pass counts of Fixed and Pass breakpoints to zero.

Sorted By Submenu allows the display to be sorted by:

• Type (Transient, Fixed and Pass),
• Address
• the order in which they were generated and added to the list.

This sorting order is remembered in the Windows Registry between sessions.

32

6.8.4 Watch Window

Displays the value of selected memory locations during the running and tracing of programs. The items
in the watch window are automatically updated when a running program stops at a breakpoint, or
when the Stop command (page 76) is issued.

Items in this display may be re-ordered by dragging and dropping.

A right-click context menu is available in this display, with the following items:

Refresh Click to read the current value(s) at the address(es) and update the display in the watch
window.

Add... Click to open the Add to Watch dialog for adding an address to watch (see below).

Delete Deletes an item selected in the Watch display.

Clear All Deletes all the items in the display.

Undelete Restores deleted items

Adjust the relative sizes of the Start/Break Point display and the Watch window with the moveable
splitter bar. The addresses and labels in the Watch display are remembered in the project file between
sessions.

6.9 Add to Watch

Dialog for adding items to the watch window, displayed from the right-click context menu in the
Watch Window. This dialog allows you to add addresses in different categories, as follows:

User Defined

Type the address in MCU memory that you wish to watch in the 'Address' edit box (hexadecimal
characters only), and add an optional description. Click 'Add' to add this item to the watch window,
or 'Add & Close' to add the item and simultaneously close the 'Add to Watch' dialog.

IX Relative

Addresses relative to the IX index register may be watched. Type in an offset or use the drop-down
list. The default offset number base is decimal, hex numbers may be entered with a $ prefix. Zero is
an acceptable offset, but not negative amounts.

IY Relative

As for IX Relative above, but in this case the offset is with respect to the IY register.

Go to Symbols/Registers

Click to close the dialog and open the Symbol Table/Register Display. From this display, symbolic
labels may be added to the watch window.

33

6.10 File Menu

Menu used to mange project files.

New Project... Begins a fresh project. If the current project has changed, the user is prompted
to save it first, then the Settings Dialog opens with default values

Open Project... Opens, and makes current, an existing project configuration. Keyboard
shortcut: Ctrl+O

Save Project... Saves the current configuration to a project file. If the file exists, it will be
silently updated, if not, a file save dialog will appear. Keyboard shortcut:
Ctrl+S

Save Project As... Opens a file save dialog for the user to save the current configuration to a file
with a new name. Keyboard shortcut: F12

Reopen... The sub-menu displays a list of up to ten of the most recently used project files.
The top entry in the list is grayed-out if it is the one currently open.

Import... Open a dialog to Import configurations from a JBug11 version 4xx. This item
is grayed out (unavailable) if no version 4xx configuration information is found
in the Windows Registry.

Exit Closes JBug11. If the current project configuration information has changed,
the user is prompted to save it before closing. Similarly, if the Macro Editor
has been in use, and the results not saved, the user will be reminded to save
them.

Terminate Terminates the program in circumstances where exit does not appear to work.

6.11 View Menu

Base Converter... Opens the number Base Converter (page 37). Shortcut: Ctrl+K

Macro Editor... Opens the Macro Editor (page 90). Shortcut: Ctrl+E

Symbol Table... Opens the Symbol Table/Register Display (page 37) with the currently-loaded
symbol table on display. Shortcut: Ctrl+L

MCU Registers... Opens the Symbol Table/Register Display (page 37) with the MCU register list
on display. Shortcut: Ctrl+R

Terminal... Brings up the Terminal Window (page 92). Shortcut is Ctrl+T.

Memory Map... Opens the Memory Map Display (page 23). Shortcut: Ctrl+M

Base Layout Use the sub-menu to select a starting point layout for various screen
resolutions. The actual layout is remembered in the Windows registry at the

34

end of each session, so the program should have the same on-screen
appearance when you next start it up.

Font Sizes Chose a font size for the Output and Command History windows.

Colors Chose a color to enhance the display of bits that are ‘set’ in the output of the
Register Display and Change command (page 73) .

6.12 Actions Menu

Menu to simplify the issuing of commands that involve the loading and saving of files to and from the
MCU. Such commands all need a file name typed on the command line which is tiresome to do
accurately. Using these menu items brings up a 'file open' or 'file save' dialog as appropriate, in which
the user may select a file name in the usual way. Closing the dialog then fills in the command line and
executes the command. Actions involving transfers to and from MCU-controlled memory will be
grayed out (unavailable) unless a talker is loaded and the status line reads 'Stopped'.

Connect Executes the Connect / Disconnect command (page 60) to open the
serial port (COM port).

Reset Executes the Reset command (page 74) to send a reset signal to the
MCU. Note that this is only available if your hardware supports it, and
the COM port is connected.

Load S19 MCU... Opens a dialog for the user to select an S19 format file for loading to
the MCU. The Load Memory (page 69) command is then executed via
the command line.

Save MCU to S19... Saves a block of MCU memory to a file in S19 format. An address
input dialog will appear for the user to define the starting and ending
addresses of the block to be saved, followed by a file-save dialog. The
Save Memory command (page 75) is then executed via the command
line.

Verify S19... Opens a dialog for the user to select an S19 format file for verifying
MCU memory. The Verify command (page 83) is then executed via the
command line.

CRC-16 MCU v. File.. Opens a dialog for the user to select an S19 format file against which
to perform a CRC-16 checksum of MCU memory. The Cyclic
Redundancy Check command (page 61) is then executed via the
command line.

Load Binary to MCU... Opens a dialog for the user to select a binary image file (usual
extension: .obj or .bin). A second dialog box appears to request a
loading address. If a valid file is selected, the file is opened and loaded
to MCU controlled memory via the Command edit box, as though the
Load Memory command (page 69) had been issued.

35

Save MCU to Binary... Saves a block of MCU-controlled memory to a binary image file. An
address input dialog will appear for the user to define the starting and
ending addresses of the block to be saved, followed by a file-save
dialog. The Save Memory command (page 75) is then executed via the
command line.

Local

Sub-menu allows the user to load, save and verify S19 files against local memory. These commands
do not require an MCU to be connected.

Load S19 to Local... As though the 'LDL' command had been issued - see the Load Memory
command

Save Local to S19... As though the 'SVL' command had been issued - see the Save Memory
command

Verify S19 v. Local... As though the 'VL' command had been issued - see the Verify
command

CRC-16 for File... As though the 'CRCL' command had been issued - see the Cyclic

Redundancy Check command

Load Binary to Local... As though the 'LDL' command had been issued - see the Load Memory
command

Save Local to Binary... As though the 'SVL' command had been issued - see the Save Memory
command

6.13 Macro Menu

Boot Script... Open the Settings>Macros tab for editing the Boot Script (see page 87).

New... Begin a new macro library script. If the currently open one has changed, the
user will be prompted to save it first. The contents of the macro editor will be
cleared and the editor window shown if not currently visible.

Open ... Open a macro library file into the Macro Editor. The default file extension is
'.mcr'. Shortcut is Ctrl+O.

Save Save the contents of the macro editor to a macro library file. Shortcut is
Ctrl+S.

Save As... Save the contents of the macro editor to a new file, default extension '.mcr'.

Record Start recording, adding new commands to the end of the current macro library.

Play Choose a macro to play from the sub-menu.

Stop Stop playing or recording.

36

Edit Open the Macro Editor

6.14 Settings Menu

Open a tab in the Settings Dialog. Once the Settings dialog is open, any other tab may be selected.

6.15 Help Menu

Index Opens Help Topics at the Index tab. Shortcut is F1.

Contents Opens Help Topics at the Contents tab. Shortcut is Shift+F1.

Getting Started Opens Help at ‘Getting Started’ - see Appendix G.

Error Report... Opens the Error Report dialog for compiling a text file report on a problem
encountered while using JBug11, see page 98. Useful if email support is
required.

About Brings up the usual 'About' box.

6.16 Keyboard Shortcuts

Keyboard Shortcuts - Main Window Active

Ctrl+B Reset the MCU. Useful if you have fitted the remote resetting hardware.

Ctrl+E Open the Macro Editor

Ctrl+K Opens the number Base Converter

Ctrl+L Open the Symbol Table/Register Display with the currently-loaded symbol table on
display.

Ctrl+M Opens the Memory Map Display.

Ctrl+O Open a project file

Ctrl+R Opens the Symbol Table/Register Display with the MCU register list on display

Ctrl+S Save the current project file

Ctrl+T Open the Terminal Window.

F12 Save the current project file under a new name

Esc Clear the command line (if it has focus). If a macro is playing, it will stop.

F1 Open on-line help at the 'Index' tab

37

Shift+F1 Open on-line help at the 'Contents' tab

Keyboard Shortcuts - Macro Editing Window Active

Ctrl+O Open a macro library file into the macro editor

Ctrlt+S Save the current macro library file

Ctrl+C Copy to Clipboard

Ctrl+V Paste from Clipboard

Ctrl+X Cut to Clipboard

Ctrl+Y Delete the line containing the insertion point (caret).

Keyboard Shortcuts - Terminal Window Active

Ctrl+I Send a binary image file

Ctrl+Q Close the terminal window

6.17 Symbol Table/Register Display

Window to display the currently-loaded symbol table (see Using a Symbol Table on page 81), or the
current MCU control registers.

Display this window by clicking the item 'Symbol Table' or 'MCU Registers' in the View menu, or use
the keyboard shortcuts Ctrl+L or Ctrl+R.

• Select which kind of display you want with the buttons at the top of the form.
• Sort the list by address or name using the radio buttons at the foot of the window.
• Select one or more items in the list and click 'Add to Watch' to transfer them to the Watch

window.

6.18 Base Converter

This window allows rapid conversion between hexadecimal, decimal and binary notations. Launch it
from the view menu, or by using the keyboard shortcut Ctrl+K.

Entering a valid number in one of the boxes and pressing the enter key, or clicking the '=' button, will
fill in the other two boxes accordingly. If the 'Auto completion' check box is ticked, the current
hexadecimal number in the calculator will be appended to the text in the Command edit box, and focus
will be transferred to that box. The converter form will not close, but will become inactive. If 'Auto
completion' is unchecked, then clicking '=' will not affect the command line, and will leave the
converter open and active.

The maximum value that the converter will handle is $FFFF or 65535 decimal. Only valid hexadecimal
characters may be entered in the 'Hexadecimal' edit box, similarly for the other two boxes.

38

Clicking the 'ASCII' button brings up a quick-reference table of ASCII characters (in the Arial font
face). Double-clicking on a character in this table will transfer its hexadecimal value to the converter.

7 CONFIGURATION

7.1 Settings Dialog

The eight tabs of the Settings Dialog contain various editable fields for the customization of JBug11.
All the configuration data on the tabs is stored in project files when the program closes, and the file
name of the project file is itself stored in the Windows Registry, so that the settings are restored when
JBug11 is started again. At the bottom of the dialog are three buttons:

OK Button

Click to close and save the data entered in the various tabs. The data is checked for consistency, and
if incorrect or missing data is found, an error message will appear with diagnostic information.

Cancel Button

Click to close Settings and discard any changes

Help Button

Click to open the on-line help topic corresponding to the currently visible tab.

7.2 Settings>General

Tab for miscellaneous, general settings.

39

MCU Type

Select the MCU that you are using from the drop-down list. This action will fill in all the relevant edit
boxes in 'Settings' with the default information for this MCU. This information is taken from the file
MCUData.cfg in the 'MCU' subdirectory of the installation folder. If the particular MCU that you are
using is not in the drop-down list, then it may be added to this file - see Appendix D.

Command Defaults

Bytes to List Sets the default value for the number of bytes to list if the List command
(page 68) is issued with only a starting address.

Lines to Unassemble Sets the number of instructions to unassemble if the Unassemble command
(page 80) is issued with only a starting address.

Auto Connect at start-up

Tick this box so that JBug11 automatically issues the Connect command when the program is launched
- see the Connect / Disconnect command on page 60.

Auto Reset after connect

Tick this box so that JBug11 automatically issues the Reset command after connecting.

Show warning on BPROT bits set

Check this box to show a warning message if the user tries to program on-chip EEPROM (or the
CONFIG register) while one or more of the BPRT bits remain set in the BPROT register, where such
a register is provided.

Show warning on Vpp not set

Check this box to show a warning message when JBug11 is about to program EPROM so that the user
is reminded to ensure that the programming voltage, Vpp, is present.

Boot talker without break handshake

Checking this box will by-pass the handshaking process whereby JBug11 waits for the MCU to
transmit the 'break' character on its serial TxD line after a reset in special bootstrap mode, as the signal
for a boot-loading program to be transmitted. Unless really necessary, I advise you to leave this box
unchecked. It is provided because certain USB-to-Serial adaptors (page 13) appear to be unable to
handle the 'break' character.

Ignore echo errors on write

Check this box to have JBug11 write MCU memory without checking that the bytes returned by the
talker match the bytes that were sent. This might be useful, for example, if a device is wired to the
MCU in such a way that its control registers occupy part of the MCU address space, but these
registers have a different behavior when written and when read. I strongly advise you to leave this box
unchecked unless you are certain it is necessary, as valuable feedback on the operation of JBug11 will
be lost if there is no check on bytes written.

40

Register Info

Edit box for the file containing information on the MCU control registers. If necessary, use the
'Open...' button to browse for the correct file - see Appendix D. This box is automatically updated
when the drop-down list is used to select an MCU. File names may appear in this and the following
edit boxes with a token replacing part of the path - see Path Tokens on page 53.

Opcode Info

Edit box for the file containing information on the MCU opcodes. Actually, there is only one opcode
file for all varieties of HC11: 'HC11_Opcodes.csv'.

Associate the extension ".jbp" with JBug11

Click this button to do as its caption says. When JBug11 is first run, it automatically makes this
association, but if there is subsequently a problem with file associations, the link between the .jbp file
type and the JBug11 executable may be restored with this button.

7.3 Settings>COM Port

Tab for configuring the RS232 port which will be used to communicate with the target board. Note
the caveats in USB-to-Serial Adapters on page 13.

Port to use:

Select an available COM port from the drop-down list. This combo box displays all the COM ports
returned by the Windows 'Enumerate COM Ports' function.

41

MCU Crystal Freq.

Select the frequency of the crystal which controls the MCU. When the drop-down list closes the
Talker Upload and Communication baud rates will be automatically updated. Because of the design
of the bootloading firmware in the MCU, alternative rates are available for uploading the talker. Where
such a rate is achievable by the PC host, this may be selected from the dialog that appears when the
drop-down list closes.

Baud Rates

The two check boxes in this panel select the baud rate which JBug11 uses to boot load the talker
(where you are using a RAM talker), and the rate used for subsequent general communication with
the MCU thereafter. The only baud rates obtainable in practice are those which are integer divisions
of 115200 baud, for example 7680 baud is obtainable because 7680 = 115200 ÷15. If a rate
somewhere between the available rates is entered in one of the edit boxes, then the UART in the PC
defaults to the first available rate above the rate entered. Beside each edit box is a spin control which
will automatically select the next higher or lower integer division of 115200.

For a general discussion of the necessary baud rates, see Baud Rates on page 17.

To set these rates automatically for a number of common crystal frequencies, select a crystal from the
combo box - see previous item.

Remote Reset

The options on this panel control the signaling of a reset between the host PC and the target board.
The RS232 communication ports on a PC have two available output pins (besides TxD): DTR (Data
Terminal Ready) and RTS (Ready To Send). Either of these may be used to perform a reset remotely,
provided the necessary hardware logic is in place (see Appendix B - Hardware).

PC controls reset

Tick this box if the host PC is able to control the reset cycle on the target board.

Using DTR/RTS

Select whichever signal is used for the remote re-setting.

With +ve/-ve going pulse

Select the pulse polarity. For the avoidance of doubt about the meaning of RS232 'asserted', etc. the
descriptions +ve/-ve refer to the actual polarity of the pulse with respect to the common ground pin
(pin 5 on the DB9 connector). Note that most RS232 level shifter chips on target boards invert this
polarity, and also that RS232 line receivers usually bias their inputs so that a disconnected input
appears to be at a negative voltage.

Remote General-Purpose Switch

With the necessary logic hardware on the target board, the PC can be used to activate a function of
the user's choice, using whichever RS232 output signal is not already being used by the remote reset
function. See General-Purpose Switching on page 12 and Appendix B - Hardware for more details.

42

PC controls switching

Tick this box if the host PC is able to toggle the output.

Using:

Select whichever RS232 output pin is to control the switching. If DTR is selected then the labels in
this box will change to DTR rather than RTS.

General-purpose switch is 'ON' when RTS is positive/RTS is negative

Choose the pin voltage level which corresponds to the 'ON' state.

Note

Note that changes made on this tab will cause the COM port to close (disconnect) if the Settings
dialog is closed by clicking the 'OK' button.

7.4 Settings>Macros

Tab for editing the boot script and for settings affecting macro library files.

Boot Script

This box is provided to enter commands which can be executed every time a talker is loaded, or the
COM port is opened. Select an appropriate radio button and enter the desired commands in the edit
box below. See Boot Script on page 87 for more details.

43

Associate current macro with Project

Check this box to cause the current macro library file to be reloaded when the current project is
reloaded. The current macro library file is whatever is currently open in the Macro Editor (page 90)
when the project file is saved.

Disable Autostart macro (if any)

Check this box to prevent any macro named 'AUTOSTART' from running - see Autostart Macro on
page 88 for details.

Abort Macro on

A playing macro can be arranged to stop automatically under certain conditions. These are:

Command line format error

Tick this box to cause a playing macro to stop if a command within the macro is formatted incorrectly,
causing an error message beginning with the <-- symbol to appear in the Command History window.

Command failure

Tick this box to cause a playing macro to stop if a command within the macro has an unsuccessful
result; for example the Verify Erase command (page 84) finds some un-erased memory.

7.5 Settings>Debug

Tab for configuring the behavior of JBug11 while running and tracing programs, including:

• How much information is displayed in the Output Window,

44

• How SWI instructions and illegal opcodes are treated, and
• The behavior when the Step Over command (page 78) is used.

UnAsm: add spaces at code breaks

Check this box to have JBug11 add a blank line in unassembly listings after the following instructions:

• Unconditional jumps, including the BRA (Branch Always) instruction. No space is left if the
jump address is that of the immediately following instruction, i.e. the jump was included simply
to use up processor cycles.

• Return from Interrupt, RTI
• Return from Subroutine, RTS

Such spaces can improve the readability of disassembled code by highlighting the places where
sequential code execution is not possible.

Disable vector substitution

Check this box to prevent JBug11 substituting the SWI and Illegal Opcode pseudo-vectors prior to
running or tracing programs. If this box is ticked, it is not possible to trace through an SWI in user
code (page 25) or Illegal opcodes in user code (page 26) even where the user has provided his own
service routines. The only occasion on which it is useful to check this box is when the vectors are in
non-modifiable memory. This checkbox is grayed-out (unavailable) if you are in the middle of tracing
or running a program.

Do not stop at breakpoints within 'stepped-over' routines

When using the Step Over command (page 78) to step over a subroutine which itself contains
previously set breakpoints, JBug11 can be customized to halt at, or ignore, such breakpoints. Note
that, irrespective of the selection in this checkbox, JBug11 will still update the pass counts of Fixed
and Pass breakpoints in a 'stepped-over' routine. This checkbox is grayed-out (unavailable) if you are
in the middle of tracing or running a program.

Run/Trace Display in O.W.

This group of checkboxes governs the extent of the information provided in the output window during
running and tracing.

Instruction at Start : check this box to display a disassembly of the CPU instruction at the
address at which running or tracing started.

Registers at Start: check this box to add a display of the CPU inherent registers at the
start point.

Show starting info only once: with repetitive tracing there is no need to display the starting and break
information, since the break information at one step will be the same as
the starting information for the next step. Check this box to suppress
the additional information.

45

Instruction at Break: check this box to display a disassembly of the CPU instruction at the
breakpoint address.

Registers at Break: check this box to add a display of the CPU inherent registers at the
breakpoint.

Symbol Table

When tracing or disassembling code, symbolic labels may optionally be displayed. This panel controls
the display, and the location of the symbol table from which the information is taken. See Using a
Symbol Table on page 81 for more details.

Do not use Symbolic labels will not be added to traced or disassembled code.

As last loaded S19 file (plus filename, if one is loaded)

Select this option if symbolic label information is to be taken from a symbol table
generated alongside an S19 file. If selected, then every time an S19 record file is loaded
to memory, JBug11 will look to load a symbol table of the same name but '.sym'
extension.

From file: Select this option if symbolic label information is to be taken from a fixed location.
If so, choose a file in the edit box. File names may appear in this edit box with a token
replacing part of the path - see Path Tokens on page 53.

7.6 Settings>Talkers

Tab for selecting a talker for JBug11 to use for communicating with the target MCU. See Talkers on
page 14. This talker may reside in RAM, and be loaded each time the MCU is reset, or it may be in
MCU EEPROM, or in some other memory. Use this tab to select the talker type. Note that file names

46

may appear in these edit boxes with a token replacing part of the path - see the section on Path Tokens
on page 53. The easy way to select the correct files is to use the combo box on the 'General' tab to
select an MCU - when the drop-down list closes, these file names are updated.

Use RAM-resident talker

Check this radio button to select a talker which will be reloaded each time the MCU is reset. Then
choose the appropriate files. As a minimum you will need to select a Talker and a Map File. If you
wish to program memory other than RAM, for example on-chip EPROM, then you will also need to
select overlay files - see Settings>Overlays.

The checkbox 'Wait for echo on write' affects the way JBug11 interacts with the 'TWritMem'
subroutine in the talker (see a typical talker .asm file such as JBug_Talk.asm in the \Talkers\ sub-
folder). This routine is used to write on-chip or external RAM. When this checkbox is checked,
JBug11 waits for the echoed byte before writing the next byte, when unchecked JBug11 sends all the
bytes then reads the COM port received-data buffer to check that the bytes were correctly sent. The
latter method is faster, but depends on the talker being able to write and read memory within the time
it takes to transmit a byte. If you modify the talker to use the EEPROM write delay routine, then check
this box.

Use EEPROM-resident talker

Check this radio button to use a talker which has been previously programmed into EEPROM on the
MCU. A Map File must be selected. See the JBug11 Manual for more details on talker options.

Use talker in other memory

This is for advanced users only who understand the implications of having a talker in, say, external
memory. A Map File is required and additionally there are radio buttons to select a 'starting' talker if
one is needed to get the main talker running.

47

7.7 Settings>Overlays

Tab for selecting Talker Overlay Files (see page 15) for use with a boot-loaded, RAM-resident talker.
Four different overlays are available for different purposes, though in the case of the last two, you will
need to write and assemble them yourself, based on the sample source code provided.

The easy way to select the correct files is to use the combo box on the 'General' tab to select an MCU -
when the drop-down list closes, these file names are updated.

On-chip EEPROM Overlay for writing the on-chip EEPROM, usually from $B600 to $B7FF, but
from $F800 to $FFFF on the 811E2.

On-chip EPROM Overlay for writing EPROM, usually only one-time-programmable, unless you
(OTP ROM) have a windowed device allowing UV erasure of EPROM.

Ext. Byte-written Overlay for writing external (expansion) memory that may be written one byte
at a time. Note that there is NO NEED to use a special overlay for most
external RAM, which may be handled by the standard talker. This overlay is
only needed if you have some form of EEPROM memory that needs additional
operations to write.

Ext. Page-written Overlay for writing external (expansion) memory that has to be written a 'page'
at a time, such as FLASH memory.

48

7.8 Settings>Memory

This tab defines to JBug11 the organization and types of memory available to the MCU on the target
board. The format is two hexadecimal numbers separated by an ellipsis, e.g:

0000..00FF

It is not necessary to type dollar signs before the numbers - they will be assumed to be in hexadecimal
anyway. Spaces may be included to improve readability (not within numbers, of course).

Memory ranges which are not entered in any of the boxes will be assumed to be undefined, and
inaccessible to the CPU. The 'Visible' check boxes tell JBug11 that this memory is visible to the CPU.
Depending on the mode and on bits in the CONFIG register, memory may be visible or not - it is up
to you to keep track of this, as JBug11 has no way of determining for itself what memory is visible at
what address.

The easy way to select the correct memory ranges is to use the combo box on the 'General' tab to
select an MCU - when the drop-down list closes, this information is updated.

To get a quick overview of the whole memory map when the Settings dialog is closed, click 'Memory
Map...' in the View menu, or use the keyboard shortcut Ctrl+M.

'Visible' check boxes

These allow a quick control of whether the ranges defined in the edit boxes are in fact visible to the
MCU.

49

• On-chip RAM

This edit box defines to JBug11 the range of addresses which are on-chip RAM.

• Control Registers

This edit box defines the range of bytes covered by the on-chip control registers. For 'A' and 'E' series
chips this will be $1000 to $103F (unless the INIT register is altered), while on other chips in the
68HC11 family there may be more or less control registers, and they may have different default
locations in the memory map. For example, the 'K' series chips have more registers, and their default
location is $0000 to $007F.

• Mask ROM

This edit box defines to JBug11 the range of addresses which are implemented as mask ROM - that
is ROM provided on-chip but not including EPROM which may be programmed by the user. This
ROM holds the boot loading code and Special Mode vectors. Format as for the RAM box.

• EEPROM

This edit box defines to JBug11 the range of addresses which are on-chip EEPROM. The 'On-chip
EEPROM' overlay handles writing to this kind of memory. Format as for the RAM box.

If you are using Al William's 'takeree' (see Tracing in EEPROM on page 25), make sure that the
EEPROM edit box is empty, and nominate the range which is actually EEPROM on the chip as
External RAM.

• EPROM / OTP ROM

This multi-line edit box defines to JBug11 the range of addresses which are on-chip EPROM or one-
time-programmable ROM. The 'On-chip OTP ROM' overlay handles writing to this kind of memory.
Format each line as for the RAM box.

• External RAM

This multi-line edit box allows you to define additional RAM which may be available in one of the
MCU expanded modes. Writing of this memory is handled by the standard talker, no overlay is needed.
The format for each line is similar to the RAM edit box, for example:

8000..8FFF
E000..FFFF

• External Byte-written

This multi-line edit box allows you to define external memory, such as EEPROM, that requires special
processing to write it. Memory defined here will be read as if it is external RAM, but written using the
'Ext. Byte-written' overlay - see Talker Overlay Files on page 15. Do NOT use this definition box for
RAM type expansion memory which may be written satisfactorily by the standard talker.

50

• External Page-written

This multi-line edit box allows you to define external memory, such as FLASH which requires to be
written a page at a time, or external EEPROM where writes are constrained to be within one page at
a time. Memory defined here will be read as if it is external RAM, but written using the 'Ext. Page-
written' overlay - see Talker Overlay Files.

Select a data page size from the combo box. This must lie between $10 (16 decimal) and $100 (256
decimal). If a whole page must be written every time a write takes place, then check the box:
‘Writes are whole page only’. If fewer bytes than a page’s worth can be written at a time, but these
bytes must all lie within a page boundary, then uncheck this box.

Clear All

Click to clear all the memory definition edit boxes.

Memory Priority

Where there are different kinds of memory at overlapping addresses, the MCU prioritizes access to
memory as follows: The Control Registers have top priority, followed by: Internal RAM, then
Expansion RAM. If the MCU is in one of the Special modes, then the internal mask ROM has priority
over expansion memory. The range of page-written memory (e.g. external FLASH) has the lowest
priority for writing as far as JBug11 is concerned. For more information about which areas of memory
are visible in which operating mode, see the data sheet for the MCU that you are using.

7.9 Settings>Notes

This tab has a single memo edit box. Use this memo edit to make notes about the current project.
These will be stored with the project file.

7.10 Settings>Ind Mem

51

Tab for configuring indirectly-addressed memory (see page 23), that is memory which does not form
part of the MCU's address space, but which the MCU can access in some other way, for example by
serial communication using the SPI interface. Such memory commonly has one or more control
registers beside its main memory space. This tab brings together in one place all the necessary
configuration information.

Register Information File

Edit box for the file containing information on the indirect memory control register(s). If necessary,
use the 'Open...' button to browse for the correct file. File names may appear in this and the following
edit boxes with a token replacing part of the path - see Path Tokens on page 53.

Memory Allocation:

• Memory edit box This multi-line edit box allows you to define the address range(s) of the
indirectly-addressed memory. The following example shows the
necessary format although it is unlikely that you will need more than
one line with a single memory chip:

0000..1FFF
E000..FFFF

• Visible check box Use this to quickly change the visibility of the data defined in the edit
box above.

• Data page size Writing to indirectly-addressed memory, particularly SPI serial eeprom,
is usually limited to a page of data at a time. Use this box to specify the
page size.

Overlays

Both reading and writing of indirectly-addressed memory require the use of overlay files to replace
temporarily parts of the talker code, see Overlays on page 15.

• Memory access Overlay for reading and writing indirectly-addressed memory (e.g.
serial eeprom). When writing, the page size specified above is used.

• Register access Overlay for reading and writing the registers in indirectly-addressed
memory.

52

8 COMMANDS

8.1 General information

Commands to JBug11 to carry out monitoring, debugging and loading operations are typed in to the
Command Edit Box at the lower left-hand corner of the main form. When the Enter or Return key is
pressed, the command is copied to the command history list in the window above the edit box. It does
not matter where the cursor is in the command line when the Enter key is struck, provided that the
command line edit box has focus. Each of the available commands is allocated a separate page in this
manual with a full description of its use and limitations, and a summary of all the commands is given
in Appendix C. Note also these points:

• If a syntax error is made in typing the command, JBug11 echoes the command to the history
window with the addition of an explanatory message. In the following example of a mis-typed
List command, 008G is not a valid hexadecimal number:

L 0080 008G <-- Argument(s) not recognized

See the summary of Command Line Errors in Appendix E on page 98 for details of the
possible messages.

• Previously issued commands may be recalled by using the up and down arrow keys, and then
edited. Previous commands may also be reused by clicking or double-clicking on a line in the
command history list. When commands are recalled, they are transferred to the command line
edit box minus any comments, so that they may be corrected if necessary.

• Hitting the escape key clears the command line.

• The default number system for commands is hexadecimal (except for the specification of the
number of repeats - see, for example, the Unassemble command, page 80). However, decimal
and binary notation may also be used: precede a decimal number by a '#' symbol, and a binary
number by '%'. There is no need to prefix hexadecimal numbers with the dollar sign, although
it is not an error to do so. Leading zeros are optional. The following commands are identical:

L 0080 8F
L $0080 $008F
L #128 %10001111

• Commands may be typed in upper or lower case; it makes no difference as they are converted
to upper case before being parsed. The following commands are identical:

L FFF0 FFFF
L fFf0 fffF

• Command elements may be separated by one or more spaces or by a single comma, or a
mixture of the two. The following commands are identical:

L,0080,008F
L 80 8F

53

• Some commands can be limited to affecting only the local, JBug11, copy of the MCU memory
space (see local memory on page 12). All the sample L(List) commands above would result
in listing MCU memory. Typing the following command lists only the local copy of memory:

LL 80 8F

The addition of the letter L after the first L limits the command to act only on the local
memory. Because the local commands do not have to read and write to the MCU they will
appear to work faster.

• Where a command expects a range of memory to be specified by a starting and an ending
address, then it is always possible to replace the second (ending) address by a '+' sign followed
by a value to add to the starting address. Thus the following two commands are identical in
their action:

L 80 8F
L 80 +F

• Label names, as listed in a loaded symbol table, or as found in the register information file, may
be used wherever an address is expected. Label names are partially case sensitive, see Labels
instead of Addresses on page 54 for an explanation of how JBug11 treats labels. The currently
available symbolic labels may be viewed in the Symbol Table/Register Display (page 37).

• Certain commands conclude by pre-filling the command line with information so that the
command may be repeated simply by pressing the <Enter> key. The following commands do
this:

List Memory
Unassemble
Trace
Step Over
Go (Run)

In every case, only the first element of the command is written back to the command line. For
example, if you wish to trace a program beginning at $F800, and type: 'T3 F800' in order to
trace the first three instructions, then after the command has executed, the command line will
be filled in with 'T3', allowing you to trace the next three commands simply by pressing the
<Enter> key.

8.2 Path Tokens

In order to save space in file name edit boxes, and on the command line, two common path names are
presented in tokenized form:

[MyDocs]\ This token replaces "My Documents\", itself an alias for a path such as: "C:\Documents
and Settings\Current User\My Documents\"

[JBug11]\ This token replaces the installation path of the JBug11 executable, e.g. "C:\Program
Files\JBug11\

54

The tokenized forms are also used within project files to store file information. This simplifies the
backup and transfer of projects to another computer, since file information is interpreted locally instead
of by using absolute paths.

8.3 Labels instead of Addresses

Label names, as listed in a loaded symbol table, or as found in the register information file, may be used
wherever an address is expected. Label names are partially case sensitive.

JBug11 looks up symbol names in an ordered fashion: first it checks for a name with exactly the case
entered. If there is no case-sensitive match, then a case-insensitive search is done. If a single match is
found, then this is used; however, if more than one label is found which matches the spelling (but not
the case) of the label supplied, then the first matching spelling is used.

For example, suppose the following symbol file is loaded:

Main 8026
Dly1 802c
LongDly 8033
MAIN 8039
TestLoc 8042

• Entering 'Dly1' will find $802C
• 'DLY1' will find $802C (no other label has the spelling 'D L Y 1')
• 'Main' will uniquely find the value $8026.
• 'MAIN' will uniquely find $8039
• 'MaiN' will find $8026 being the first instance of 'M A I N' in the list

The command:

L Main LongDly

would be the same as:

L 8026 8033

And the command:

F 8050 8050 TestLoc

would fill the two bytes at $8050/1 with the address of TestLoc ($8042)

All the control registers on an 'E' series chip could be listed by typing:

L PortA Config

this is equivalent to:

L 1000 103F (provided the registers are in their default location)

55

8.4 PCbug11-style Alternative Commands

The following command words, in the format expected by PCbug11, are also allowed. They are
translated to the JBug11 format shown in the table below, and then executed:

PCbug11 JBug11 Notes
command translation

ASM A Not supported in JBug11 Version 5xx

BF F The JBug11 command insists on having two addresses specified, so the
PCbug11 form with only one address will fail or give an incorrect result

DASM U

DB, MD L

LOADS LD JBug11 only allows S19-record files to have the extension .rec or .s19;
also, JBug11 does not allow the specification of an offset loading
address

LSTM LM

MOVE D In JBug11, moves to EPROM are not allowed

QUIT Q Not supported in JBug11 Version 5xx

RD R The PCbug11 'T' option is not supported in JBug11 (it is unnecessary)

VERF V The PCbug11 option 'SET' is not supported.

VERF
 ERASE VE

The following PCbug11 commands have not been implemented: ASM, MS, QUIT, RM, RS,
EEPROM

56

8.5 Set Breakpoints BR

Format:

BR Breakpoint1[X] [Breakpoint2[X] [Breakpoint3...]]]

Command to set one or more breakpoints. A breakpoint address may be preceded or followed by an
'X' to indicate that a fixed breakpoint is to be set at that address. Two breakpoints may not be set at
the same address.

It is the user's responsibility to see that breakpoint addresses are set at the first byte of instructions.

Examples:

br 8010 Set a transient breakpoint at address $8010

BR 801ax Set a fixed breakpoint at address $801A

br 8023 x804B 8027 Set transient breakpoints at $8023 and $8027 and a fixed breakpoint at
$804B

Breakpoints may also be set as part of the Go (Run) command (page 67), and by using the right-click
context menu in the 'Start/Break Points' window. To delete breakpoints, use the NOBR (page 57)
command or the context menu. The BR command will not set pass type breakpoints - see Set Pass
Breakpoint (page 56). Breakpoints may be set in RAM or EEPROM but not in EPROM or external
Flash PROM.

To reset the pass count of Fixed breakpoints, use the Reset Pass Count command (page 74).

8.6 Set Pass Breakpoint BRP

Format:

BRP[Trigger] Breakpoint
or
BRP Breakpoint Trigger

Command to set a pass type breakpoint. If the first form is used, BRP should be followed by the pass
trigger value as a decimal number without a space. If 'Trigger' is omitted it will default to 1. Only a
single pass type breakpoint can be set at a time with this command. Pass breakpoints may also be set
by using the right-click context menu in the breakpoint 'Start/Break Points' window. It is the user's
responsibility to see that breakpoint addresses are set at the first byte of instructions.

Example:

brp10 801B Sets a pass breakpoint at address $801B, with a pass count trigger
or of 10 (decimal)
BRP 801B 10

To reset the pass count, use the Reset Pass Count command (page 74).

57

8.7 Clear Breakpoints NOBR

Format:

NOBR [Breakpoint1 [Breakpoint2 [Breakpoint3...]]]]

Command to clear breakpoints. If no argument is supplied then all breakpoints are removed. If one or
more arguments are supplied, then the breakpoints at those addresses are removed.

Examples:

nobr Removes all breakpoints

NOBR 801a Removes the breakpoint at address $801A

nobr 8023 804B Removes the breakpoints at $8023 and $804B

Breakpoints may also be removed, individually or collectively, by using the right-click context menu
in the 'Start/Break Points' window.

8.8 Clear Output Window CLS

Format:

CLS

This command only clears the output window. It does not affect the CPU or its memory at all.

8.9 Clear Local Memory CLM

Format:

CLM

This command only clears the local memory held within JBug11. It does not affect the CPU or its
memory at all.

58

8.10 Compare Memory CMP

Format:

CMP StartAddress EndAddress|+Length CompAddress
or
CMPL StartAddress EndAddress|+Length CompAddress

To compare a block of memory starting at one address with another starting at 'CompAddr'. The start
address of the first block must be explicitly stated (an asterisk will not do). Either the end address,
or a length must then be specified, followed by the address of the start of the block to be compared.
Blocks of memory for comparison must not overlap.

The CMP form compares MCU-controlled memory, CMPL only compares blocks of local memory.

If the blocks are identical the output window displays the message:

Blocks are identical

If the blocks are not identical, then the output window displays, in red, the memory addresses and the
corresponding memory contents at the first locations which differ, for example the command:

CMPL 0 +ff 8000

might give:

Compare fails at 00F6 = 94 80F6 = 15

59

8.11 Alter CONFIG CONFIG

Format

CONFIG NewValue

Command to change the EEPROM value of the CONFIG register. NewValue is the desired new byte
value. An advisory dialog appears when the command has completed.

The CONFIG register on most variants of the HC11 is a latched register whose value is stored in an
EEPROM cell and is read from there to static latches every time the MCU is reset. Writes to CONFIG
are actually writes to the EEPROM cell.

Using any other command which writes to memory, for example the R command (Register Display
and Change, page 73), will attempt a write to the static latch copy of CONFIG. However, some
MCU's in the HC11 series do allow writes to the static latch copy of CONFIG (the HC11F1) and
others only implement CONFIG as static latches (the HC11D0 and D3). For these MCU's the R
command is useful.

The CONFIG EEPROM location is protected from accidental writes by the PTCON bit in the BPROT
register (where provided). This bit defaults to 1 when the MCU is reset. If the CONFIG command is
issued when the PTCON bit is set, the command will fail with an error message. It is the user's
responsibility to change BPROT before using the CONFIG command.

A complete sequence might be:

1. Issue the following commands:

R BPROT=0F
CONFIG xy
R BPROT=1F

2. Reset the MCU

3. Check that the CONFIG register has changed:

R CONFIG

Notes:

• On certain chips, the F1 for example, the latch to which the CONFIG EEPROM cell is
transferred at reset, is itself writable in Special Test Mode. In this case the Register Display
and Change (page 73) or Modify Memory (page 71) commands may be used to write this latch
(treated as RAM).

• The 'CONFIG' command first erases the value of the eeprom CONFIG location back to $FF

and then programs it with the new value. It appears that this does not work reliably on chips
where the static latches may be written independently of the eeprom location, unless the static
latches hold the value $FF. This effect has been noticed on F1 chips. The workaround is to
issue the command:

60

R CONFIG=FF

before issuing the CONFIG command itself.

8.12 Connect / Disconnect

Format

CONNECT | DISCONNECT

Command to open or close the RS232 serial COM port.

When disconnected, commands may still be given to JBug11, but these will fail unless they affect only
local memory.

The 'Connect' speedbutton may be used as a quick way of issuing this command - see Speedbuttons
on page 28.

61

8.13 Cyclic Redundancy Check CRC

Format:

CRC Path&FileName.rec|s19
or
CRCL Path&FileName.rec|s19
or
CRC StartAddress EndAddress|+Length
or
CRCL StartAddress EndAddress|+Length

Command to compute the CRC-16 cyclic redundancy check sum, either for a Motorola S19 format
file or a range of bytes. FileName must include the path and either an 's19' or 'rec' extension. In the
second form, the start address must be specified explicitly (an asterisk will not do), with either an end
address or a length.

The checksum is done by calculation: CRC = X^16+X^15+X^2+1. It will protect 2^16 bits or 8192
bytes against single bit errors. The version used in JBug11 was adapted from a Delphi routine posted
on: http://www.ibrtses.com/delphi/dcrc.html and Copyright (99,2000) Ing.Büro R.Tschaggelar.

Finding the CRC-16 for a Motorola S19 format file

JBug11 may be used to find the checksum for an S19 format source file, or for finding the checksum
of an S19 file as-loaded to MCU memory. Use the CRCL filename form of the command to get the
checksum of the original file and CRC filename for the as-loaded data. The checksum is only carried
out on the data bytes, not on all the bytes that make up S19 records. S19 files need not have
contiguous loading addresses.

CRCL filename reads the S19 file into local memory and then performs the checksum calculation on
the local data.

CRC filename opens the S19 file but only uses the loading information in the S19 records to read the
corresponding data from the MCU into local memory. The checksum calculation is thus done on the
MCU's image of the file data. In this way a check may be made that a previous loading operation was
successful.

Finding the CRC-16 for a range of bytes

CRCL StartAddress EndAddress finds the checksum over the nominated range of bytes in local
memory.

CRC StartAddress EndAddress finds the checksum over the nominated range of bytes in MCU-
controlled memory.

As an example, the following command could be used to compute the CRC for the sample S19 file
supplied with JBug11:

CRCL "[JBug11]\Samples\Looptest_8000.rec"

This should produce, in the Output Window:

62

CRC-16 for S19 file:
 [JBug11]\Samples\Looptest_8000.rec
 is $91BA (#37306)

Now loading the file to memory, the CRC-16 of the memory image may be found:

LD "[JBug11]\Samples\Looptest_8000.rec"
CRC "[JBug11]\Samples\Looptest_8000.rec"

should produce:

CRC-16 for MCU memory, according to file:
 [JBug11]\Samples\Looptest_8000.rec
 is $91BA (#37306)

If this talker is loaded in memory, then typing

CRC 8000 8028

should produce:

CRC-16 for MCU memory from 8000 to 8028
 is $91BA (#37306)

63

8.14 Duplicate Memory D

Format:

D StartAddress EndAddress|+Length ToAddress
or
DL StartAddress EndAddress|+Length ToAddress

To duplicate a block of memory at some other address, the start address of the block to be copied
must be explicitly stated (an asterisk will not do). Either the end address, or a length must then be
specified, followed by the address to which the start of the block is to copied. Blocks of memory may
be copied forwards or backwards in the memory space. If the resulting copy overlaps the original, then
the original is obliterated by the copy within the range of addresses which overlap.

The D form writes to MCU-controlled memory, DL writes only to local memory.

The following example shows the duplication of the interrupt vectors present in the boot ROM from
BFD6 to BFFF, to the top end of expansion memory (an operation only possible in Special Test Mode
and with external RAM or flash PROM):

D BFD6 BFFF FFD6

The 'DL' form of this command may be used to fill memory anywhere in the 64 KB address space, but
the 'D' form will fail if the destination is not covered by one of the address ranges specified in
Settings>Memory.

This command will copy bytes to EEPROM and external memory subject to the conditions specified
in Writing to EEPROM (page 20) and Writing External Memory (page 23). It will not work in
EPROM.

8.15 Bulk Erase EEPROM EBULK

Format:

EBULK

Command to erase the whole of EEPROM. The correct EEPROM address range should be specified
on the Settings>Memory tab before this command will work.

Suppose that an HC811E2 was in use, with the CONFIG register having its upper four bits all set, so
putting EEPROM at $F800 - $FFFF, and this range had been entered in Settings>Memory, then
issuing the command:

EBULK

will show a confirmatory dialog, and then erase all the bytes in the range $F800 - $FFFF back to $FF.
Notes:
1. This command will fail unless the BPROT register (where provided) is written to a suitable

value before carrying it out.
2. This command cannot be used to erase CONFIG

64

8.16 Fill Memory F

Format:

F StartAddress EndAddress|+Length ByteString|CharacterString
or
FL StartAddress EndAddress|+Length ByteString|CharacterString

To fill memory with a repeating sequence of bytes, the start address must be explicitly stated (an
asterisk will not do). Either the end address, or a length must be specified, followed by the bytes or
character string to be placed in memory. Character strings must be delimited by matching pairs of
single or double quotation marks. The number of bytes or characters in the string is limited to 32. Byte
strings must have two characters per byte.

The F form writes to MCU-controlled memory, FL writes only to local memory.

Examples:

F 8000 800F 01 Fills MCU controlled memory from address $8000 through
$800F with the byte $01

F 8000 800F 414143 Fills MCU controlled memory from address $8000 through
$800F with the byte sequence $41, $42 $43 repeated as often
as will fit.

FL 8000 +F 414243 As preceding example, but only fills JBug11 local memory.

FL 8000 801F 'DEF' Fills local memory from $8000 to $801F with the repeating
sequence of bytes $44, $45, $46.

To fill memory with a single instance of a byte string or character string, the start and end addresses
may be entered as the same value. Memory is then filled with one copy of the byte string, or ASCII
bytes corresponding to the given character string, starting at StartAddress; as in the following
examples:

F 8000 8000 "JBug11" Fills MCU controlled memory from address $8000 through
$8006 with the bytes $4A, $42, $75, $67, $31, $31.

F 8000 +0 'JBug11' Identical with previous example.

F 8000 +0 4A4275673131 Identical in result with the previous example (bytes specified
directly, rather than as a character string)

The 'FL' form of this command may be used to fill memory anywhere in the 64 KB address space, but
the 'F' form will fail if the destination is not covered by one of the address ranges specified in
Settings>Memory.

This command will fill EEPROM and external Flash PROM subject to the conditions specified in
Writing to EEPROM (page 20) and Writing External Memory (page 23). It will not work in EPROM.

65

8.17 Find Bytes FIND

Format:

FIND StartAddress EndAddress|+Length ByteString|CharacterString
or
FINDL StartAddress EndAddress|+Length ByteString|CharacterString

To find a string of bytes within memory, the start address must be explicitly stated (an asterisk will not
do). Either the end address, or a length must be specified, followed by the bytes or character string to
be found. Character strings must be delimited by matching pairs of single or double quotation marks.
The number of bytes or characters in the string is limited to 32.

The FIND form searches MCU-controlled memory, FINDL searches only local memory.

The address returned by this command is that of the start of the first occurrence of the string. Further
occurrences of the same search string may be found using the NEXT command.

Examples:

FIND 8000 800F 414143 Searches MCU-controlled memory from address $8000
through $800F for the byte sequence $41, $42 $43.

FIND 8000 +1F 'DEF' Same effect as preceding example.

findl 0 ff 39 Searches local memory for the byte $39 between addresses
$0000 and $00FF

See also the description of the NEXT command.

66

8.18 Find Next NEXT

Format:

NEXT

To find the next occurrence of a string of bytes previously specified with a FIND command. This
command actually searches only local memory, but this is unimportant as local memory will have been
updated by the FIND command. No commands other that FIND or NEXT can be interposed between
one use of FIND or NEXT and the NEXT command - for example, issuing the FIND command
followed by the L(List) command will generate an error if the NEXT command is then issued.

The address returned by this command is that of the start of the next occurrence of the string.

For example, suppose that memory contained the following bytes:

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
8000 86 00 B7 10 08 86 38 B7 10 09 86 16 B7 10 28 B68.......(.
8010 10 28 8A 40 B7 10 28 44 45 46 44 45 46 44 45 46 .(.@..(DEFDEFDEF
8020 A7 00 08 5A 26 FA 86 00 C6 07 CE 80 60 BD 80 86 ...Z&.......'...

and that the command:

FIND 8000 802F 'DEF'

had found the first occurrence of the byte sequence $41, $42, $43 at $8017. Issuing the command

NEXT

would elicit the output:

String found at: $801A

and issuing NEXT again would produce:

String found at: $801D

67

8.19 Go (Run) G

Format:

G [StartAddress|* [Breakpoint1[X] [Breakpoint2[X]...]]]

Command to run a program on the MCU. If StartAddress is not specified, or an asterisk is used, then
the current value of the 'T/G' address will be used. If StartAddress is specified, or an asterisk is used,
then Breakpoints (page 24) may be specified at which execution will halt. Breakpoint addresses may
optionally be preceded or followed by an 'X' to define a fixed breakpoint.

Programs may be started at an address in any kind of memory (RAM, EPROM etc.), but breakpoints
may be defined only in alterable memory; this also excludes flash memory because of its bulk writing
nature.

The user is responsible for ensuring that breakpoint addresses are located at the first byte of actual
instructions. The Unassemble command (page 80) may help to locate these.

The following example runs a program starting at address $8100, with one breakpoint at $810F and
a second (fixed) breakpoint at $813A:

G 8100 810F 813Ax

The instruction at the starting address is disassembled, and appears in brackets and in green in the
breakpoint window, together with the breakpoints set as a result of issuing the G command. When the
MCU program is executing but not yet halted at a breakpoint, the status bar will display the word
'Running'. When halted, the status display will change to 'Running - stopped at break point', and the
relevant breakpoint will be highlighted in the breakpoint window in red. Issuing the G command
without any arguments will then continue the program to the next breakpoint.

If the Go (Run) command (page 67) is issued while JBug11 is stopped at a breakpoint during tracing
(status line reads: 'Tracing - stopped at breakpoint'), then any transient breakpoint set by the previous
Trace command is deleted.

Issuing the Stop command (page 76) at any time will cause the running program to stop (unless the
talker has become corrupted). But note that if you are running a program that has interrupt service
routines (ISR), it is only possible to stop in the middle of a service routine if you are using the XIRQ\-
PD0 connection and a '.XOO' type talker, unless interrupts have been re-enabled within the routine.
But it is always possible, in advance of running, to set a breakpoint at which to stop within the ISR.

If breakpoints are to be set in EEPROM, make sure that the BPROT register, where one is provided,
contains a suitable value to allow writing to EEPROM.

68

8.20 List Memory L

Format:

L [StartAddress|* [EndAddress|+Length]]
or
LL [StartAddress|* [EndAddress|+Length]]

Command to list memory. If no end address is specified, then 16 locations will be listed, beginning at
StartAddress. If no start address is specified in the command, then 16 locations will be listed,
beginning at the current value of the JBug11 'L/U' address - see the Information Sidebar on page 30.
The default value of 16 locations may be changed in Settings>General.

The L form lists MCU-controlled memory, LL lists only local memory.

Examples:

L 8000 8018 List MCU controlled memory from $8000 to $8008
L 8000 +18 Same as preceding example

The above two commands will produce something looking like this (of course the actual bytes in
memory depend upon the programming):

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
8000 86 00 B7 10 08 86 38 B7 10 09 86 16 B7 10 28 B68.......(.
8010 10 28 8A 40 B7 10 28 7E 00 .(.@..(~.

The command:

LL 8008

will list the 16 locations in local memory, starting at address $8008, and finishing with location $8017,
for example:

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
8000 10 09 86 16 B7 10 28 B6 (.
8010 10 28 8A 40 B7 10 28 7E .(.@..(~

If the current value of the 'L/U' address were $8010, then typing the following:

L

would list the 16 bytes of MCU controlled memory from $8010 to $801F. The value of the 'L/U'
address is updated by the Trace and Go commands so that it has the value of the latest breakpoint,
making it easier to see where the program has halted.

69

8.21 Load Memory LD

Format:

LD Path&Filename.rec|.s19
LDL Path&Filename.rec|.s19
or
LD Path&Filename.obj|bin StartAddress
LDL Path&Filename.obj|bin StartAddress

Command to fill memory from a Motorola S19 file or from a binary image file. The LD form writes
to MCU-controlled memory, LDL writes only to local memory.

A complete path and filename, with extension, must be supplied. If a file in Motorola S19 record
format is to be loaded, then the extension must be '.s19' or '.rec'. If a binary image file is to be loaded,
it must have the extension '.obj' or '.bin' and a starting address for loading must be specified. This
command will program EEPROM, EPROM and external memory under the right conditions, see
Writing to EEPROM (page 20) and Writing External Memory (page 23), but binary image files cannot
be loaded to EPROM.

The path part of the filename may be shortened by the use of tokens - see the section on Path Tokens
on page 53. If the path and filename include spaces, then the whole argument string must be enclosed
in single or double quotation marks, as in this example:

LD "C:\My Documents\68HC11\S19 Files\First.rec"

The following example loads a binary image file into MCU controlled memory, starting at address
$9000. The file will be looked for in the JBug11 installation folder, subfolder 'Samples':

 LD "[JBug11]\Samples\Bin Example 1.obj" 9000

Note the use of quotation marks to enclose an argument which contains spaces and would otherwise
be wrongly interpreted.

To save having to type the file name and path, this command may be executed automatically from the
Actions menu with one of the four items: Load S19 to MCU, Load Binary to MCU, Load S19 to
Local and Load Binary to Local. The word 'LD' or 'LDL', as appropriate, followed by the full file
name, is then written to the command edit box, and the command is executed. A speedbutton is
provided for the common operation of loading an S19 format file to MCU-controlled memory.

The 'LDL' form of this command may be used to fill memory anywhere in the 64 KB address space,
but the 'LD' form will fail if the destination is not covered by one of the address ranges specified in
Settings>Memory.

During the execution of the Load command, the Output window displays information on the areas
of memory being written.

70

8.22 List Macros LM

Format:

LM

Command to list the names of the macros in the currently loaded macro library file. See Macros on
page 86 for more information on the structure of macro files and commands.

The following example lists the names of the macros in the currently loaded macro library file.

LM

If the file "Sample 1.mcr", supplied with the program, was the currently loaded macro library, then
the above command would produce the following in the Output Window:

MACRO1 {Macro to process an S19 file}
MACRO2 {Trace testing macro}

The names of the individual macros are also copied to the Command History window, followed by an
arrow thus:

MACRO1 <--
MACRO2 <--

This is so that any one of the macros may then be executed by double-clicking on its name in the
Command History window (or by using the up/down arrow keys on the keyboard to select it)

71

8.23 Modify Memory M, MM

Format:

M StartAddress
or
MM StartAddress

Command to modify memory byte by byte. An explicit start address must be specified. When the
command is given, JBug11 will reply with the address and the current value at that address, followed
by a period. Typing a new byte value, followed by the enter key, will change that memory location,
then advance the memory address by one and present the next byte for modification.

Pressing the space bar followed by the enter key will preserve the existing memory value. Pressing the
enter key alone will terminate the modify memory command. Typing a '+' followed by an offset
(default hexadecimal) will advance the location to be modified by that amount, similarly a '-' will
retard the location. Typing '=' followed by an address will make this address the new location for
modification. An omitted offset defaults to 1, omitting the address defaults to the current address.

For example, typing

M 8000

might give

 8000 34.

Completing this line thus:

 8000 34.4A

and pressing the enter key will change memory location $8000 from $34 to $4A and present the next
memory location for modification thus

 8001 C3.

If the enter key is now pressed without typing a new byte value, the command will terminate, leaving
location $8001 with the value $C3. If the space bar was pressed before the enter key, then the value
$C3 would also have been preserved, but the command would not terminate, and the next location,
$8002 would be presented for modification. Typing:

 8001 C3.+3

will advance the location to $8004 without changing the byte at $8001, and present the byte for
modification:

 8004 5F.

Typing an '=' and a new address moves modification to that address:

 8004 5F.=8010

72

leads to:

 8010 30.

This command also writes equally well to EEPROM, see Writing to EEPROM (page 20), but it will
not write to EPROM or external Flash PROM. It is not available within a macro.

8.24 Pause & Wait PAUSE, WAIT

Format:

PAUSE [milliseconds]
or
WAIT [milliseconds]

The Pause (or Wait) command has two forms. If PAUSE is followed by a number of milliseconds, then
JBug11 will pause macro execution for this length of time. 'Milliseconds' is a decimal number. 'Wait'
is an exact synonym for 'Pause'. They both work in the same way as they do in PCbug11.

PAUSE is only available in macros, and following the G(Go) command.

If PAUSE is not followed by a number, then macro execution is paused until the user hits any key, or
the character $4B is received by the serial port. This lets the target MCU control the execution of
JBug11 macro commands. In this form of the command, the message 'Pause end signaled' appears in
the Output Window when the $4B character is received or the user hits a key. Note that the program
will still be running on the MCU, and if there are further commands in the macro, these will then be
executed.

Examples:

WAIT Suspends macro execution until the user presses a key or until the value
of $4B is received on the PC serial port

PAUSE 1000 Suspends macro execution for 1 second.

73

8.25 Register Display and Change R

Format:

R
or
R InhReg=NewValue
or
R CtrlReg
or
R CtrlReg=NewValue

Command to display and modify registers. InhReg stands for one of the HC11 CPU inherent registers:
A, B, IX, IY, SP or CCR. CtrlReg stands for one of the HC11 control registers, e.g. HPRIO or
PORTA. When using this command to change a register, no spaces should be left either side of the
equals sign. The R command may be used in four different ways:

1. Issuing R by itself causes JBug11 to read and display the current values of the CPU inherent
registers. The results are displayed in the register display area of the Information Sidebar (page 30)
and also in the output window. This command will work when stopped at a breakpoint, but not during
the running of a program on the MCU.

2. Issuing R followed by the name of one of the inherent registers, an equals sign and a new value
(in hexadecimal) will change the register to that value. For example:

R A=25

The R command cannot be used to set PC (the program counter). Use the Go (Run) command
(page 67). Actually, this command only changes the value that appears in the register display (see
Information Sidebar). The new value takes effect when running or tracing begins.

3. Issuing R followed by the name of an MCU control register displays the current state of that
register, with the set bits highlighted in bold. For example:

R HPRIO

might produce the following line in the output window:

103C HPRIO [E5=229] RBOOT SMOD MDA IRV PSEL3 PSEL2 PSEL1 PSEL0

The output line shows: the address of the register, its name, its current value in hexadecimal, an equals
sign, its current value in decimal, the eight bits named, and highlighted in bold if set. Because bold type
does not always show up well at small font sizes, the ‘set’ bits may also be colored - see View menu
on page 34.

Note that there is one refinement to this version of the command. If the register is one of those that
have a hi and lo part effectively making up a sixteen bit register, then typing the name without the last
H or L will display the current sixteen bit value, for example:

R TCNT

74

might produce:

100E TCNT [$5C4A, #23626]

4. Issuing R followed by the name of an MCU control register, an equals sign and a new value,
will set that control register to the new value (if the register is one that allows writing). Binary number
representation may be useful here. Example:

R TMSK2=03 or
R TMSK2=%00000011

sets the timer prescale factor to 16 (see Freescale documentation). This command cannot be used to
change the eeprom implementation of the CONFIG register - see Altering CONFIG on page 59.

8.26 Reset RESET

Format

RESET

This command, which is only available when 'PC controls reset' is checked on the Settings>COM Port
tab, and the necessary hardware is in place, allows JBug11 to reset the MCU remotely by toggling an
RS232 control pin. This is a convenience, but you can still use JBug11 without this facility.

This command is only available when connected, i.e. when the COM port is open.

The 'Reset' speedbutton may be used as a quick way of issuing this command.

8.27 Reset Pass Count RPC

Format:

RPC [Breakpoint1 [Breakpoint2 [Breakpoint3...]]]]

Command to reset the pass count of fixed or pass breakpoints. If no argument is supplied then all pass
counts are set to zero. If one or more arguments are supplied (up to a maximum of 5), then the pass
counts at those addresses are set to zero.

Examples:

nobr Resets all pass counts to zero

RPC 801a Resets the pass count of the breakpoint at address $801A

All pass counts may be reset by using the right-click context menu in the breakpoint Start/Break Points
window (page 31).

75

8.28 Save Memory SV

Format:

SV StartAddress EndAddress|+Length Path&Filename.rec|.s19
SVL StartAddress EndAddress|+Length Path&Filename.rec|.s19
or
SV StartAddress EndAddress|+Length Path&Filename.obj|.bin
SVL StartAddress EndAddress|+Length Path&Filename.obj|.bin

Command to save a block of memory to a file in Motorola S19 or binary image format. The SV form
saves MCU-controlled memory, SVL saves only local memory.

The start address of the block to be saved must be stated explicitly (an asterisk will not do). Either
the end address, or a length must then be specified, followed by the path and name of the file. The
extension determines whether the data is saved in Motorola S19 format or as a binary object file.

The path part of the filename may be shortened by the use of tokens - see Path Tokens on page 53.
If path and filename include spaces, then the whole argument string must be enclosed in single or
double quotation marks.

In the following example, the EEPROM-resident talker in an E1 type chip is saved to the file
Test1.S19:

 SV B600 B6CE "[MyDocs]\68HC11\Test1.s19"

If successful, a 'Saving complete' message will appear in the Output Window:

To save having to type the file name and path, this command may be executed automatically from the
Actions menu with one of the four items: Save MCU to S19, Save MCU to Binary, Save Local to S19,
Save Local to Binary. The word 'SV' or 'SVL', as appropriate, followed by the full file name, is then
written to the command edit box, and the command is executed. A speedbutton is provided for the
common operation of saving MCU-controlled memory to an S19 file.

76

8.29 Stop S

Format:

S

This command stops JBug11 running or tracing a program. The status display will revert to the word
'Stopped', and the 'T/G' address will be updated to show the stopping point. The PC value in the
inherent register display will be that of the talker idle loop address: 0012 for one of the supplied RAM
talkers, or some other value if an EEPROM-resident talker is in use.

The Stop command deletes transient breakpoints if they were set by a previous Trace operation,
otherwise all breakpoints are preserved in the list of breakpoints, but the corresponding temporary
SWI opcodes ($3F) are removed from the MCU memory.

Note: if you are running a program that has interrupt service routines, it is only possible to stop in the
middle of a service routine if you are using the XIRQ\--PD0 connection and a '.XOO' type talker,
unless interrupts have been re-enabled within the routine. But it is always possible to set a breakpoint
in advance at which to stop, since the SWI instruction cannot be masked by the I bit in the CCR.

8.30 Launch Terminal Window TERM

Format:

TERM

This command opens the Terminal Window (see page 92). It is included so that a macro can put the
user in direct terminal communication with a target board. Suppose, for example, that the
demonstration program included in the distribution, TermDemo.asm, has been compiled to run in
expansion memory at $8000. Then the following macro might be used to load the demonstration
program, start it running and open the terminal window, whenever the MCU is re-booted:

DEFM Autostart
BEGIN

LD "C:\Program Files\JBug11\Samples\TermDemo.s19"
G 8000
TERM

END

77

8.31 Trace T

Format:

T[Repeats] [StartAddress|*]

Command to trace a program in MCU controlled memory. If no explicit start address is specified, then
tracing will begin at the current value of the 'T/G' address. Repeats is an optional number which
specifies how many times the command is to be repeated. Note that repeats is specified as a decimal
number, unlike all other values which are entered in hexadecimal. The value of 'Repeats' follows the
letter T without a gap. When the command is given, JBug11 carries out the following operations:

1. The instruction at the starting address is disassembled to discover the address of the following
instruction (or instructions if there is the possibility of a branch);

2. JBug11 determines which is the effective following instruction, based on the opcode, the
contents of the CCR, and on other information as appropriate.

3. A transient breakpoint is then written to MCU memory to 'catch' the program after execution
of the current instruction. This breakpoint is displayed in the Start/Break Points window
(page 31);

4. The MCU is set running at the current instruction, the status line is updated to read 'Tracing',
and the instruction at the trace starting address appears in the breakpoint display in green;

5. As soon as the MCU stops at a breakpoint, that breakpoint is highlighted in red in the
breakpoint display, the breakpoint information is copied to the output window, and the status
line displays: 'Tracing - stopped at breakpoint'. If populated, the watch window display is also
updated.

6. The above processes are repeated if 'Repeats' is specified as greater than 1.

The JBug11 internal trace starting address, T/G, and the default list and unassemble address, L/U, are
also updated to show where the last trace instruction has stopped; so issuing the 'T' command alone
will continue tracing from where the previous trace operation halted.

Care needs to be taken if tracing is begun at an RTS or RTI instruction if program execution has not
arrived at that point by itself, e.g. as the result of issuing a Go (Run) command (page 67). This is so
because the next address at which tracing (or stepping over - see the Step Over command on page 78)
will halt is computed from the preceding value on the stack: this value will be quite arbitrary if tracing
is begun 'out of the blue' at either of these instructions.

Examples:

T 800B Begins tracing with the instruction at address $800B

T3 Begins tracing at the current value of 'T/G' address and traces the next three
instructions

This command is not available within EPROM or external Flash PROM.

78

8.32 Step Over O

Format:

O[Repeats] [StartAddress|*]

Command to step over a program in MCU controlled memory, that is to jump over subroutine calls.
If the next instruction is not a subroutine call, then this command behaves exactly like the Trace
command. The 'T' and 'O' commands may be freely inter-mixed. If no explicit start address is specified,
then stepping/tracing will begin at the current value of the 'T/G' address. When the 'O' command is
given, JBug11 carries out exactly the same five operations listed under the 'T' command, with the
exception that the 'following instruction' mentioned in operation no.2 will be adjusted in the case of
subroutine calls to be the next sequential instruction rather than the instruction at the entry to the
subroutine.

'Repeats' is an optional number which specifies how many times the command is to be repeated. Note
that repeats is specified as a decimal number, unlike all other values which are entered in hexadecimal.
The value of 'Repeats' follows the letter O without a gap.

The T/G address (see Information Sidebar on page 30) is also updated to show where the last trace
instruction has stopped; so issuing the 'O' command alone will continue stepping from where the
previous trace or step operation halted.

Supposing that the following fragments of code are in memory:

b600 ce1000 LDX #$1000
b603 a609 LDAA 9,X
b605 8d0c BSR Delay
b607 a72f STAA $2F,X
....

b613 18ce0064 Delay LDY #100
b617 1809 Dly1 DEY
b619 26fc BNE Dly1
b61b 39 RTS

Issuing the command:

T B600

will begin tracing with the instruction at address $B600, and will halt at $B603. Issuing either 'T' or
'O' by itself will then advance tracing by one instruction, halting at $B605. Issuing the 'T' command
alone would then trace into the subroutine, and halt at $B613, whereas issuing the 'O' command would
step over the subroutine, halting at $B607.

The behavior when stepping over a routine may be customized to some extent by checking the box
'Do not stop at breakpoints within 'stepped-over' routines' on the Settings>Debug tab. When checked,
this will cause JBug11 to silently process any breakpoint encountered within the 'stepped-over' routine.
Transient breakpoints will be silently deleted, fixed and pass points will have their pass count updated,
but tracing will not halt there.

79

Note also the caveat in the Trace command concerning beginning tracing or stepping at an RTS or RTI
instruction.

This command is not available within EPROM or external Flash PROM. Stepping through a program
in EEPROM requires that the BPROT register, where one is provided, contains a suitable value to
allow modification of EEPROM.

Giving the 'Step Over' command when halted at an SWI instruction which the user has incorporated
in his own code, and for which a service routine has also been written, will step over the service
routine and halt next at the instruction following the SWI opcode.

8.33 Switch SWITCH

Format

SWITCH ON | OFF

Command to toggle the polarity on the spare COM port output line (either DTR or RTS, whichever
is not in use by remote reset). Only available if the necessary hardware is available on the target board,
and the correct options have been chosen on the Settings>COM Port tab. This command may also be
issued using the 'Switch' speedbutton.

80

8.34 Unassemble U

Formats:

U[Repeats] [StartAddress|*]
or
UL[Repeats] [StartAddress|*]
or
U [StartAddress|*] [EndAddress|+Length]
or
UL [StartAddress|*] [EndAddress|+Length]

Command to unassemble (disassemble or reverse engineer) memory. If no start address is specified,
or an asterisk is used, JBug11 will use the current value of its own starting address, in L/U. Either an
ending address, or a number of repeats may be specified (but not both). Repeats is an optional number
which specifies how many times the command is to be repeated. Note that repeats is specified as a
decimal number, unlike other values which are entered in hexadecimal. The value of 'Repeats' follows
the letters U or UL without a gap. Code cannot be unassembled between $FFFC and $FFFF.

The U form unassembles MCU-controlled memory, UL unassembles only local memory.

The following example disassembles the 10 instructions beginning at $0000:

U10 0000

This should produce something like the following output if one of the supplied RAM based boot
talkers is loaded:

0001: 0000 8E00ED LDS #$00ED
0002: 0003 CE1000 LDX #$1000
0003: 0006 6F2C CLR $2C,X
0004: 0008 CC302C LDD #$302C
0005: 000B A72B STAA $2B,X
0006: 000D E72D STAB $2D,X
0007: 000F 8640 LDAA #$40
0008: 0011 06 TAP
0009: 0012 7E0012 JMP $0012
0010: 0015 B6102E LDAA $102E

The information on each line is: line number, address, bytes at that address, instruction, operands. In
certain instances a comment will be added, for example if an unrecognized opcode is encountered. A
symbolic disassembly is also possible - see Using a Symbol Table on page 81.

The above result would also be achieved by issuing the command:

U 0 +17

It may be noticed in passing that the instruction at $0012 is the idle loop which allows the talker to
implement the 'Stopped' mode.

81

To reverse engineer a program available, for example, as a binary image file, it is not necessary to
connect to an MCU at all; the program may simply be loaded into local memory at the correct starting
address, and the 'UL' command used to disassemble it.

The readability of disassembly listings may be enhanced by checking 'UnAsm: add spaces at code
breaks' on the Settings>Debug tab. This will add a blank line in unassembly listings after the following
instructions:

• Unconditional jumps, including the BRA (Branch Always) instruction. No space is left if the
jump address is that of the immediately following instruction, i.e. the jump was included simply
to use up processor cycles.

• Return from Interrupt, RTI
• Return from Subroutine, RTS

8.35 Using a Symbol Table

A symbol file may be nominated to JBug11 so that when addresses are encountered during disassembly
which match a symbol value, then the symbol is displayed instead of the address. The symbol file is a
plain text file. JBug11 will cope with any file, provided that:

1. The symbol name appears first on the line;

2. The symbol value appears next, and is separated from the name by at least one space, comma
or tab character. The value must be in hexadecimal but it is optional for it to be preceded by a '$' sign

3. After the value any characters will be ignored, for example: comments, occurrences of the
symbol, etc. (provided they are separated from the value by at least one space, comma or tab
character)

4. Lines which cannot be interpreted as being a name followed by a value are ignored. This means
that most heading lines will be discounted.

5. Some assemblers introduce the ASCII form feed character, $0C, at the top of the listing - all
control characters are ignored.

To make use a symbol file, select one of the radio buttons on the Settings>Debug tab. If the nominated
file cannot be found, or cannot be interpreted, no symbol table will be loaded. The example given in
the description of the Unassemble command (page 80) might look like this if a symbol table was in use:

0001: 0000 talker_start 8E00ED LDS #$00ED
0002: 0003 CE1000 LDX #RegBase
0003: 0006 6F2C CLR $2C,X
0004: 0008 CC302C LDD #$302C
0005: 000B A72B STAA $2B,X
0006: 000D E72D STAB $2D,X
0007: 000F 8640 LDAA #$40
0008: 0011 06 TAP
0009: 0012 talker_idle 7E0012 JMP talker_idle
0010: 0015 sci_srv B6102E LDAA SCSR

82

One or two factors have to be borne in mind when using a symbol table:

• Labels are partially case-sensitive. When looking-up the symbol table, JBug11 searches first
for an exact case match, and returns the associated value if found, then makes a search
ignoring case. This allows you to have two labels with the same spelling, but different
capitalization (if your assembler can do it).

• In an assembly language program, more than one label may reference the same value. JBug11
has no way of knowing which label is the correct one if such a value is encountered - it simply
picks the first label in the list which matches the given value.

• Labels longer than 8 characters will cause the output listing to become mis-aligned.

• Only 16-bit values are converted to labels, except in the case of the single byte representing
an address in page-zero memory when a Direct Address mode opcode is encountered.

The currently-loaded symbol file may be viewed by clicking on 'Symbol Table' in the View menu, or
using the keyboard shortcut: Ctrl+L

83

8.36 Verify V

Format:

V Path&Filename.rec|.s19
or
VL Path&Filename.rec|.s19

Command to verify memory by comparing it with a Motorola S19 format file. The V form verifies
MCU-controlled memory, VL verifies only local memory. If the path and filename includes spaces,
then the whole argument string must be enclosed in single or double quotation marks, as in this
example:

V "C:\My Documents\68HC11\S19 Files\First.rec"

The path part of the filename may be shortened by the use of tokens - see Path Tokens on page 53.
This command may also be activated from the 'Actions' menu.

If the command is successful, the message 'MCU memory verifies OK' will appear in the output
window. If the memory does not verify correctly, then a message similar to this will appear:

Verify fails at 8043 MCU = 8D S19 = 00

As another example of the use of the Verify command, the following macro might be used to program
and verify EEPROM with an EEPROM-resident talker:

DEFM Load_EEPROM_Talker
BEGIN

R bprot=10
ebulk
LD "[JBug11]\Talkers\JB_Talk_EE.rec"
R bprot=1F
V "[JBug11]\Talkers\JB_Talk_EE.rec"

END

Note that PCbug11 allowed an additional argument, an address in MCU memory at which to begin
the verification process. This has not been implemented because it is meaningless in the case that the
S19 file specifies non-contiguous address ranges. The JBug11 Verify command strictly compares the
S19 file information with the bytes in MCU-controlled memory at the addresses specified in the file.

84

8.37 Verify Erase VE

Format:

VE StartAddress [EndAddress|+Length]

Command to verify that MCU memory is erased (bytes = $FF). StartAddress must be stated explicitly
(an asterisk will not do). If no second address is given, only the location at StartAddress will be
checked. If an explicit end address or an increment to add to StartAddress is specified, then the given
range will be checked. The command simply reads the MCU-controlled memory over the specified
range and compares the memory values with $FF. For example, if the command:

ve b7f0 +f

were issued, then the program might reply with the following message in the Output window, showing
that memory over this range is fully erased:

Memory erased over range B7F0 to B7FF

While the command:

VE B7F0 B800

might produce:

Memory NOT fully erased. At B800 MCU memory = 59

85

8.38 Indirect Memory Commands

Four commands are provided for interacting with Indirectly-addressed Memory (see page 23). These
are:

• Read or Write an indirect register
• List indirect memory
• Load an S19 or binary file to indirect memory
• Save indirect memory to an S19 or binary file

They generally operate in the same way that the main memory commands do, and their syntax is the
same, with the addition of the letter ' I ' after the command letter. Note that all accesses of indirect
memory require an overlay and separate ones are provided for accessing the indirect registers(s) and
the indirect memory itself. These overlays must be specified on the Settings>Ind Mem tab.

Read an indirect register: RI RegName
Write an indirect register: RI RegName=NewValue

Same syntax as the Register command, but note that an indirect register definition file has to be
specified in the Settings>Ind Mem tab.

List Indirect Memory LI [StartAddress|* [EndAddress|+Length]]

Same syntax as the List command

Load a File LDI Path&Filename.rec|.s19
or LDI Path&Filename.obj|bin StartAddress

Same syntax as the Load command

Save a File SVI StartAddress EndAddress|+Length Path&Filename.rec|.s19
or SVI StartAddress EndAddress|+Length Path&Filename.obj|.bin

Same syntax as the Save command

The Load and Save commands may be issued from the 'Actions' menu item, in which case file open
and save dialogs will appear as necessary.

JBug11 maintains an internal 64K array of bytes to correspond with those in indirect memory, and
which are used in data transfers, like local memory is used with transfers to MCU addressed memory.
This array cannot be viewed directly by the user.

The overlays used to access indirect memory will need tailoring to suit your particular circumstances.
The source code of two typical overlays is provided, and these may be used as a starting point.

86

9 AUTOMATION

9.1 Introduction

It is possible to automate the action of JBug11 in four ways:

1. Two commonly-used commands can be issued automatically at start-up:
• Connect / Disconnect
• Reset
To use this feature, tick the appropriate boxes in Settings>General.

2. A group of commands may be executed automatically immediately after boot loading the talker
- see Boot Script on page 87.

3. A group of commands in a macro script named 'AUTOSTART' may be executed automatically
after booting, see Autostart Macro (page 88).

4. Any number of commands may be grouped into named macros, which can then be executed
by typing their names into the command line, or selecting one from a drop-down list.

See the section on Macros below for an explanation of macro scripts. JBug11 includes a simple Macro
Editor for writing macro script files, or macros can be 'learnt' as you type in commands.

9.2 Macros

Macros allow a succession of commands, grouped together under a named macro heading, to be
executed sequentially, as though they were typed successively on the command line. This saves a lot
of repetitive typing. Macros are stored as plain text in Macro Library Files. Macro library files follow
the same general format as the ones used by Motorola's PCbug11. Each library file can contain an
unlimited number of separate macros, and each macro can contain any number of statements. Macro
library files have the extension '.mcr', and a typical one might look like this:

* Sample Macro library file (Sample1.mcr)
*
DEFM MACRO1 {Macro to process an S19 file}
BEGIN

LD "[JBug11]\Samples\Looptest_8000.rec"
L 8000 +30
U6 8000

END
DEFM MACRO2 {Trace testing macro}
BEGIN

F 8000 +3F 01
LD "[JBug11]\Samples\Looptest_8000.rec"
L 8000 +3F
T 8000 {Trace}
T ; NOTE: comments may also begin
T // with a semicolon or 2 slashes
S
L 8000 +3F

END

87

Definition of a macro begins with the word 'DEFM' (Define Macro) followed by the name of the
macro. The name may in turn be followed by up to 10 Replaceable Parameters (see page 88) . The
next line must be 'BEGIN'. Thereafter the commands that make up the macro are written in the order
in which they are to be performed. The last line of the macro must be 'END'.

You should note the following:

• Blank lines, and those beginning with an asterisk in the first character position, are ignored.

• The macro name following DEFM cannot contain spaces or commas.

• If one of the following is encountered on a command line:
• an opening curly brace (the closing curly brace is merely treated as part of the

comment),
• a semicolon, or
• a double forward slash.
then everything that follows on that line will be treated as a comment.

• Upper and lower case may be freely mixed.

• Spaces, tabs or commas may be used as separators.

Macros may call other macros, but should not call themselves. When processing a command, JBug11
checks the command against the list of macro names first, before checking whether the command is
one of the built-in ones. This has the side effect that if a macro is given the same name as one of
JBug11's native commands, it will supersede the native command, which then becomes inaccessible.

9.3 Boot Script

Command script to run immediately after the talker is booted, or after the COM port is opened, and
before any Autostart Macro (See following section). Any number of JBug11 commands may be used,
including any macro in the current macro library. This script is entered on the Settings>Macros tab.
It is independent of any macro script nominated elsewhere and is stored with the project data, not in
a separate file.

Do not include the 'DEFM', 'BEGIN' and 'END' pseudo-commands which are used in macro library
files - see Macros above.

A typical use might be to alter HPRIO after booting so that Special Test Mode is available; if the
following line is typed into this box:

R HPRIO=E5

then E5 will be written to HPRIO immediately after booting - see Register Display and Change
(page 73) for more details of the 'R' command.

88

9.4 Autostart Macro

If a macro named 'AUTOSTART' is part of a library file already loaded when the MCU is re-booted,
then this macro will be played automatically after a talker is loaded (and after any boot script) . Even
where a macro library file does contain an 'Autostart' macro, the automatic playing may be suppressed
by checking the 'Disable Autostart macro (if any)' box on the Settings>Macros tab.

Here is an example of an auto start macro which will put the MCU into normal expanded mode on
start-up. Of course, this will only work if writeable memory is present at the top of the memory map,
where the interrupt vectors are located in normal modes:

DEFM Autostart ; Macro to set up expanded mode
begin

d bfd6 bfff ffd6 ; Duplicate the interrupt vectors
r hprio=25 ; Set normal expanded mode

end

The need for an 'autostart' macro has been partially obviated in JBug11 Version 5 by the addition of
the Boot Script facility (see page 87).

Note that, in PCbug11, it was possible to have a macro named TRACE which would run whenever
a breakpoint was reached during tracing - this feature is not supported in JBug11.

9.5 Replaceable Parameters

Macros may contain replaceable parameters. Up to 10 parameters may be specified, from @0 to @9
or %0 to %9. @0 is the same parameter as %0, and reference to one is a reference to the other.
Following the name of the macro on the DEFM (define Macro) line should be a list of the parameters
that will be used in the macro.

Replaceable parameters may be defined (on the DEFM line) in any order, for example:

DEFM MyMacro @3 @5 @1

is valid. But note that when the macro is called as a command, then it will require three arguments,
and these will be allocated in strict left-to-right order. So, calling MyMacro thus:

MYMACRO 8000 8001 8002

will assign $8000 to @3, $8001 to @5 and $8002 to @1.

In the following (over-complicated) example MACRO3 is called by MACRO4, with one replaceable
parameter:

DEFM MACRO3 @0 ; macro takes one replaceable parameter
BEGIN

LD @0 ; (LD %0 would do the same thing)
END
DEFM MACRO4
BEGIN

MACRO3 "[JBug11]\Samples\Looptest_8000.rec"
END

89

Playing MACRO4 in the above example thus:

Macro4

is equivalent to:

LD "[JBug11]\Samples\Looptest_8000.rec"

9.6 Playing and Recording M acros

9.6.1 Playing

Macros may be played by:

1. typing the macro name as a command on the command line, or
2. selecting a macro from the drop-down list adjacent to the 'Play' speedbutton, or
3. selecting a macro from the 'Play' item in the 'Macro' menu, or
4. clicking on the 'Play' speedbutton (provided a macro has been previously selected).

Only method 1. above allows the playing of macros that have Replaceable Parameters (see above),
since these must be added after the name.

For example, to play the macro MACRO1 listed in the Macros section above, the following command
would be issued:

MACRO1

As the macro plays, each line of the macro is copied to the command edit box and executed, just as
if it had been typed in by hand and the enter key pressed.

Macros may also be played via the 'Macros' menu and via the 'Play Macro' speedbutton.

JBug11 may be configured automatically to stop playing a macro under certain conditions:

• If the macro contains an incorrectly formatted command, that is one that results in an error
message beginning with the '<--' characters, or

• The command is one that can have an unsuccessful result, e.g. a Verify command might result
in memory not being verified correctly.

These configurations are selected in Settings>Macros.

9.6.2 Recording

Macros may be recorded, i.e. the commands typed into the command edit box will be added to a macro
script. This is often referred to in other programs as 'learning' a macro. Access this via the Macro menu
or the speedbuttons. Recorded command lines are appended to the end of whatever library script is
open in the macro editor.

90

9.6.3 Stopping Playing or Recording

Use the 'Stop' speedbutton, or click the 'Record' or 'Play' button again, as appropriate, when it will
return to its inactive state. While the command edit box has focus, hitting the <escape> key will also
stop playing and recording.

9.7 Macro Editor

JBug11 includes a simple text editor for macros which may be launched in three ways:

• With the 'Edit Macro' speedbutton, or
• From the 'View' menu on the main form, or
• By using the shortcut Ctrl+E,

The editor's size and position will be remembered in the Windows registry on closure.

If changes have been made in the editor, but not saved, JBug11 will prompt the user to save the
changes before finally closing down.

Macro Editor Menu Items

File
New Clears the macro editor in preparation for writing or recording new

macros.

Open ... Opens a text file into the editor. The default file extension is .mcr,
which is the standard extension for Motorola macro library files. The
shortcut key is Ctrl+O.

Save ... Saves the contents of the macro editor to a text file, default extension
.mcr. The shortcut key is Ctrl+S.

Save As... Saves the contents of the macro editor to a text file with a new name.

Close Closes the macro editor.

Edit
Undo Undoes the previous change. Shortcut: Ctrl+Z

Cut Cut the current selection to the Windows clipboard. Shortcut: Ctrl+X

Copy Copy the current selection to the Windows clipboard. Shortcut: Ctrl+C

Paste Paste the current contents of the Windows clipboard into the editor at
the current cursor position. Shortcut: Ctrl+V

Select All Select all the text in the editor. Shortcut: Ctrl+A

Delete Line Delete the line containing the insertion point. Shortcut: Ctrl+Y

91

Make into Macro If a line or lines have been selected in the editor, then this menu item
will insert the necessary 'DEFM', 'BEGIN' and 'END' lines to form a
complete macro definition. There is no need to be precise about the
selection, provided that the selected area begins somewhere in the first
desired line and ends somewhere in the last desired line.

Check Syntax Checks that 'DEFM', 'BEGIN' and 'END' lines appear in the right order
and that the rules on replaceable parameters have been followed. It
does not check that the commands forming the body of the macro are
legal.

Macro
Play Select a macro to play from the sub-menu.

Record Begin recording. Commands typed into the command edit box are
copied and appended to the text in the macro editor.

Stop Stop recording or playing.

Options
Keep on Top Click this menu item to keep the macro editor form on top

Font Size Select a font size for the macro editor from the sub-menu

Help
Index Opens Help Topics at the Index tab. Shortcut is F1.

Contents Opens Help Topics at the Contents tab. Shortcut is Shift+F1.

Help on Macro Editor Opens the 'Macro Editor' help topic.

Note:

The Edit menu is also duplicated as a right-click context menu while you are working in the editor.
A single line may be executed by double clicking it; in which case it is transferred to the command edit
box for execution.

92

10 TERMINAL WINDOW

10.1 Introduction

JBug11 has an integrated terminal window which allows the user to send and receive bytes with a
connected MCU, provided a suitable program is running on the MCU. Bytes may be sent as ASCII
text, or in their hexadecimal representation. A demonstration HC11 program is included in the
distribution file; this is in assembly language and will need compiling to suit the memory architecture
of the proposed target MCU - see the section on the Terminal Demonstration Program below.

The terminal window may be activated by:
• clicking the item in the View menu of the main form,
• typing the keyboard shortcut Ctrl+T, or
• issuing the command 'Term' (see Launch Terminal Window) on the command line.

10.2 Window Layout and Features

The window is divided into two panes. The left hand pane displays bytes sent (black) and received
(red) in their alphabetic representation as far as possible. Non-printing characters display as hollow
rectangles (this option may be suppressed - see Terminal Window Settings below). The right hand
pane displays the same characters in their hexadecimal representation, as pairs of numbers in the range
00 to FF.

The division between the two panes is a moveable splitter bar, by default the right hand pane is twice
as wide as the left hand one because the hex representation of bytes takes twice the width of their
ASCII form.

Bytes may be entered in either pane at will. The <Tab> key will swap between panes. The currently
active pane is highlighted in aqua. Only printable characters can be entered in the left hand pane.

The action of the <Enter> key depends upon the terminal settings. The terminal can be configured
either to send bytes immediately they are typed, or only upon pressing <Enter>. In the latter case,
additional bytes can, optionally, be sent when <Enter> is pressed. These bytes may be chosen by the
user.

The user may also chose whether or not bytes typed into the terminal are echoed before being sent.
If the program running on the target board automatically echoes the bytes it receives, then disabling
the local echo stops duplicate occurrences of sent bytes. Local echo is always enabled if ‘Send only
on <Enter>’ is in force, and when sending bytes from the HEX edit on the right hand side of the
terminal window.

Word wrapping may be enabled in the two panes, from the 'View' menu.

The terminal window uses the communication baud rate selected in ‘Baud Rates’ on the
Settings>COM Port tab, and the COM port must be connected (opened) before the terminal can be
used.

93

The <Backspace> key operates differently in the two panes, depending on whether bytes are sent
immediately, or only when <Enter> is pressed, and partly on whether or not the echoing of characters
is enabled. The action of the <Backspace> key is shown in the following table:

Send only on <Enter>

True - i.e. bytes are sent to the
MCU only when the <Enter>
key is pressed

False - i.e. bytes are sent to
the MCU immediately they
are typed

E
ch

o
se

nt
 c

ha
ra

ct
er

s
lo

ca
lly

Working in the ASCII window

Deletes the last character in the buffer,
unless the buffer is empty. Deletes the
corresponding character in the Hex
display. $08 is not sent to the MCU

Working in the HEX window

Deletes the last character in the buffer,
unless the buffer is empty. Deletes the
corresponding character in the ASCII
display. $08 is not sent to the MCU

Note: if the byte ‘08’ is entered directly
in the HEX edit window, then it will be
sent to the MCU

Working in the ASCII window

$08 is sent to the MCU and the
ASCII and HEX displays are
updated accordingly.

Working in the HEX window

If only the first character of a two-
character byte has been typed, then
this character is erased. Otherwise
there is no effect - no byte is sent to
the MCU and there is no change in
the display.

Not Available

Working in the ASCII window

$08 is sent to the MCU. No change
to the ASCII or HEX displays.

Working in the HEX window

Local echo is always on when
working in the HEX window, so if
only the first character of a two-
character byte has been typed, then
this character is erased. Otherwise
there is no effect - no byte is sent to
the MCU and there is no change in
the display

10.3 Interaction with the Monitoring/Debugging Functions

It is basically only possible to use either the main JBug11 monitor program or the terminal window
at any one time, although it is quite possible to switch from one to the other provided the correct
sequence is followed. This comes about because of the way that the monitor function acquires control

U

U

94

of the MCU - whenever the monitor transmits, it expects to seize control by using an interrupt
mechanism. It can use either the XIRQ\ or the SCI 'On Receive' interrupt, and one or other of these
must be unmasked while the monitor function is in use. The terminal window, on the other hand,
cannot freely send bytes if doing so would immediately cause the talker interrupt service routine to
take over. It is necessary, therefore, either to disable (mask) the interrupt mechanisms or to re-direct
the SCI interrupt vector while using the terminal program for communication with an MCU. An .XOO
type of talker cannot be used, and the XIRQ\ pin must not be connected to the PD0 pin. A study of
the section on the demonstration terminal communication program provided in the distribution, and
of the code in that program, will answer most questions about the mutual compatibility of the monitor
and terminal.

10.4 Terminal Window Menu Items

File
Logging Select 'On' or 'Off' from the sub-menu. If logging is on then an internal

log is kept of the bytes sent and received by the terminal window, and
this log is appended to the file specified in Terminal Window Settings
(see below) whenever the terminal session is completed. If no file has
been specified, then this menu item is unavailable.

Send Image File Opens a File Open dialog for the user to select a file to be sent to the
MCU as though it had been typed in at the terminal window. Any file
nominated here is treated as a file of bytes which are sent sequentially.
If 'Local Echo' (see below) is on, then the characters from the file will
be echoed in the terminal windows as the file is sent, whether or not the
MCU is itself echoing bytes received. Note that no handshaking is
implemented, so the MCU has to be able to process the received bytes
at the current communication baud rate, plus the nominated inter-
character delay (see Terminal Window Settings). Keyboard shortcut is
Ctrl+I

Notes:
1. Files larger than 64 KB will not be sent.
2. Shortcut is Ctrl+I.
3. Sending of a file may be aborted by pressing the <Escape> key.

Close Closes the terminal window and returns to the main form. Shortcut key
is Ctrl+Q.

Edit
Clear Windows Clears the two panes

View
Default Layout Provides a default size and position for the terminal window. This may

be used as a starting point for the user's preferred size and position;
whatever is subsequently chosen will be remembered in the Windows
Registry until next time.

Keep on Top Checking this menu item will force the terminal window to stay on top
of other forms even when inactive.

95

Font Size Allows the user to chose the font size for the Ascii and Hex edit
windows. The as-supplied default size is 8pt.

Word Wrap Check to wrap text in the display.

Settings
Terminal Settings... Click to open the Terminal Window Settings dialog.

Help
Index Opens Help Topics at the Index tab. Shortcut is F1.

Contents Opens Help Topics at the Contents tab. Shortcut is Shift+F1.

Help on Terminal Opens the 'Terminal Window' help topic.

10.5 Terminal Window Settings

Dialog for customization of the Terminal Window. Access this dialog from the 'Settings' menu item.

Show non-displayable characters as hollow rectangles

Tick this check box to cause non-displayable Ascii codes, those from $00 to $1F and from $7F to $FF,
to display as a hollow rectangle in the left hand, ASCII, pane. When this box is not checked, no
character is displayed at all. The default is to have these characters displayed as hollow rectangles.

Send only on <Enter>

If this box is checked, then bytes typed into the window will not be sent until the <Enter> key is
pressed. If unchecked, bytes are sent immediately they are typed.

Echo sent characters locally

Tick this check box to have characters typed at the keyboard echoed locally before being sent. If
“Send only on <Enter>” is checked then “Echo sent characters locally” will also be checked, and
grayed out. Note that a local echo is always operative in the Hex edit window when you are inputting
bytes in that window.

Bytes to send when <Enter> is pressed

Enter in the combo box any byte sequence that it might be desirable to send, in addition to whatever
has been typed, when the <Enter> key is pressed and 'Send only on <Enter>' is checked.

Bytes received which trigger a new line in the terminal windows

Enter in the combo box a byte sequence which, when received, will cause a newline in the terminal
window.

96

Bytes received which trigger closure of the terminal window

Enter in the combo box a byte sequence which, when received, will cause focus to return to the main
form. This is provided to speed up switching between the terminal and the de-bugging facilities.

Log File

Specify a name in the edit box, or choose a filename in the 'Open...' dialog, a file to become the
terminal log file.

Delay (in milliseconds) between characters when sending a file

Enter a time in milliseconds which will be inserted between the sending of each character from a binary
image file, or from the keyboard when 'Send only on <Enter>' is checked. Valid values are 0 ms to 100
ms.

10.6 Terminal Demonstration Program

In the distribution file is the program 'TermDemo.asm', which is installed by default in the '..\Samples\ sub-
directory. This is designed to allow a quick demonstration of the capabilities of the terminal window. It will
be necessary to compile it to suit the available memory of the target MCU - instructions are provided in the
heading comments of the file. DO NOT USE an .XOO talker, and make sure there is no cross-connection
between the XIRQ\ pin and the PD0 pin. On chips with only 256 bytes of RAM, locate the character
stacking buffer at $00B3 if using Talk_A.BOO or TalkE2.BOO, and put the body of the program in
EEPROM or expansion memory. MCU's with more RAM pose less of a problem. After compilation, the
program may be loaded with

LD "C:\...your path...\TermDemo.s19"

Execute a Go (Run) command (page 67) to the start of the terminal program body:

G xxxx

Now, without issuing any further JBug11 commands, type Ctrl+T or use the View menu to launch the
terminal window. In Terminal Window Settings (page 92), make sure that the check box 'Send only on
<Enter>' is ticked, and that the three edit boxes are blank

Typing any character in the left hand pane, or byte in the right hand one, and pressing <Enter> should
produce an echo of the same byte from the program running on the MCU. Typing 'Hello' should produce
the echo 'world'. Experiment with immediate sending by un-ticking 'Send only on <Enter>' in Terminal
Window Settings. To exit, type 'Exit' (capital E, lowercase x, i & t). After send 'Exit', do not type any more
into the terminal window, but continue in the main JBug11 window - the terminal demonstration program
will still be running so a S(Stop) command (page 76) is probably the next one to issue.

If the following byte string is entered in the combo box 'Bytes received which trigger closure of the terminal
window' in Terminal Window Settings (or is selected from the drop-down list):

45786974 (these are the ASCII values for "Exit")

then typing 'Exit' will automatically transfer control back to JBug11 and de-activate the terminal window.

97

11 ERRORS

11.1 Communication and Echo Errors

When JBug11 sends a byte to the talker it usually expects to receive an echoed byte. By comparing
the transmitted and received bytes, the program is able to assure the integrity of the RS232
communications link. If the echo is wrong, JBug11 shows an error dialog. Two classes of byte error
may be distinguished: Errors in the command byte (see the source file Jbug_Talk.asm in the
distribution, and the section on Talker Overlay Files, page 15) and errors in bytes being written to
memory. These are referred to, for convenience, as ‘Comms Errors’ and ‘Echo Errors’.

11.1.1 Comms Error

This occurs when JBug11 loses synchronisation with the talker on board the MCU. The command byte
sent to the MCU to initiate a command has been wrongly echoed back to JBug11. This happens when:

• the talker becomes corrupted, usually by being accidentally overwritten, or
• The stack has been accidentally overwritten, or
• while tracing or running, the SWI vector has become corrupted, or
• a mismatch has occurred between the communication baud rate settings of the MCU and

JBug11, or
• an .XOO type talker is being used without the PD0--XIRQ\ connection, see Talkers (page 14)

and Appendix B - Hardware, or
• unexpected bytes have been sent to the MCU. This can happen when the terminal window has

been in use, and control is regained by JBug11, or
• an operation has left the MCU in an unknown state.

It is usually necessary to reset the MCU and reboot the talker when this error appears. Where remote
reset is available, the dialog appears with [Yes] and [No] buttons, allowing you to click [Yes] for an
immediate re-boot.

When this error occurs, JBug11 writes diagnostic information to the Output Window - See
Diagnostics on page 98.

11.1.2 Echo Error

This occurs when JBug11 is sending data and the MCU target echoes back a different character from
the one that was sent. This happens when:

• the memory at an address could not be altered. It might, for example, be a location in ROM,
or a location in EEPROM when the bits in the BPROT register do not allow writing to
EEPROM, or

• the memory at an address is a control register which has one or more read-only bytes, or
• the address is that of an external memory-mapped I/O port which is read- or write- only, or
• the talker has become corrupted during a writing operation (seldom happens)

It should not be necessary to reboot the talker after this error as communication has not been lost.

Note that this error can occur part way through the execution of a command, so that some memory
may have been correctly written, while some may not be written at all.

98

When this error occurs, JBug11 writes diagnostic information to the Output Window - See
Diagnostics below.

11.2 Diagnostics

When an error dialog is displayed, diagnostic information is added to the Output Window.

In the following example, I added the line 7FF0..7FFF to the 'External RAM' box in Settings>Memory.
Now this area of memory is unimplemented on my system, so trying to use the Fill Memory command
will fail:

F 7FF0 7FF0 12

produces:

Echo error writing RAM
 Addr 7FF0 Sent 12 Rcvd BE
 State:Stopped
 Reboot MCU? = No

The constants in the information above are:

Addr Address of byte at which the echo occurred. In the case of a Comms error writing the
CPU inherent registers, an address as such is meaningless, and will always be zero.

Sent Byte sent from the PC to the talker

Rcvd Byte as echoed by the talker

State: The information in the left-hand panel of the status line.

The line 'Reboot MCU? = Yes|No' will only appear when the remote reset option is in use.

11.3 Error Report

Use this dialog (open in Help menu) to prepare a plain text report if you need to send information by
email with a request for support. Fill in the edit boxes as you feel necessary, then press 'Make Text
File...' This will make a plain text file called something like ErrRpt_20060706_1820.txt, or whatever
is the current date and time. Then send it to me at john.beatty@virgin.net

11.4 Command Line Errors

These are the error messages generated by JBug11 when it cannot carry out a command. They appear
in the Command History box, following a command in error and beginning with the symbol '<--'.
From the right-click context menu in the Command History Window you can call up the relevant help
topic on one of these errors. For a printable list of all the command line errors, see Appendix E of the
Manual.

mailto:john.beatty@virgin.net

99

APPENDIX A - ACKNOWLEDGMENTS

Motorola/Freescale

For their flexible design of the HC11 micro controller, for their good documentation, and for their design of
PCbug11 to which JBug11 obviously owes plenty

Borland

For their Delphi RAD tool - just the greatest

Dejan Crnila

For his comms port component for Delphi, v2.63. This is available from Delphi City:
http://www.delphicity.net

Embedded Acquisition Systems

For their neat and economical development board for the 68HC11E9:
http://www.embeddedtronics.com

Microsoft

For their graphical user interface and 32 bit operating system

I would like to thank Jean St-Pierre for his enthusiastic help during the early stages of program development,
and continuing input. Recently, many others have contributed good ideas, among them: John Samperi (infinitely
re-sizeable forms, a sensible start-up directory), Ken McCaughey (variable baud rates), Patrice Kadionik (the
progress bar), and Sebastien Kramm (various suggestions). Bob Smith has been a constant source of
encouragement and detailed suggestion, particularly for the return to the PCbug11 methods of managing
EEPROM/EPROM writing and verifying memory. The appearance of the Terminal Window, with simultaneous
display of bytes in ASCII and Hex was inspired by correspondence on the 68HC11 list server. Nico Mijnster
has spotted several bugs, and been the inspiration for extending support to 'K' series chips. Thomas
Morgenstern has inspired me to add support for writing to Flash memory, and his work has been extended by
a useful dialog with Bruce Elliott. My thanks go to Stijn de Witt for discovering how to get WinHelp to open
the Topic Dialog with the tab of your choice. Håkan Nilsson discovered a serious bug in the disassembly of
relative jumps and suggested the extension to handle tracing through illegal opcodes, and the storing of project
configuration information in plain-text files. Mark Schultz made many useful suggestions, most of which I have
incorporated!. Seralathan suggested the method of automating the application of Vpp when programming
EPROM. Finally I should say that every single correspondent who has written to me over the last seven years
of JBug11's development will have contributed something - usually their problems have stemmed from my
inadequate documentation or an insufficiently intuitive interface.

Manual written in: WordPerfect 10
PDF document editing Acrobat 5
Graphics edited in: Paint Shop Pro 7
Hardware line diagram drawn in: Isis 6.9 Lite (part of the Proteus suite)
HC11 assembly language programs written with: UltraEdit 14 by Ian D Mead
Programs compiled with: Pass11 by Pascal Niklaus
Help file composed with: HelpHikes Pro by Sanjay Kanade
Installation program: SIBuilder from PJSoft by Peter Johnson

http://www.delphicity.net
http://www.embeddedtronics.com

100

APPENDIX B - HARDWARE

This diagram shows the basic set-up needed for JBug11 to communicate with the MCU, to allow
JBug11 to reset the MCU remotely, and possibly make use of the general-purpose switch output.

NOTE: NOT TO BE USED FOR CONSTRUCTION. This diagram is a notional schematic only;
intended to illustrate the intent of the various components. Please see the circuit diagrams and pin and
voltage information published in the Freescale data sheet for the particular MCU that you are using.
I am also not suggesting that electro-mechanical relays are actually used to realize the circuit - once
again they are there to indicate an intent.

Notes:

1. The most basic setup is TxD connected via a level-shifting chip such as a MAX232 with Port
D0, and Port D1 connected via a level shifter to RxD. A push switch is often provided on
target boards instead of Q1, to allow the chip to be reset.

2. None of the other connections needed for a fully operational MCU are shown - any
development board should provide the necessary supporting circuitry.

101

3. Note that the MODA and MODB pins are tied to ground - so that the MCU will reset in
Special Bootstrap Mode.

4. Q1 allows JBug11 to perform a remote reset of the MCU. If this is not required, then the
N–MOSFET and its connections may be omitted.

5. If the non-maskable interrupt will be used by JBug11 to gain control of the processor, using
a *.XOO talker, it is necessary to connect XIRQ\ to PD0 as shown by 'Link X' in the diagram
above (connecting the received-data pin to the non-maskable interrupt). It is quite possible to
run JBug11 without this connection, if a *.BOO talker is used, as this gains control by using
the SCI interrupt. Make sure this link is not in place if programming EPROM!

6. As an example of the General-Purpose Switching facility, a simple circuit is shown for
switching Vpp. This is made up of the additional level shifting chip, part of a MAX232, and
a relay. Vpp is the higher-than-Vdd voltage needed to program OTP EPROM. See the MCU
data sheets for its value. Note also the comments in AN101 available from;

http://www.smithmachineworks.com/embedprod.html

http://www.smithmachineworks.com/embedprod.html

102

APPENDIX C - COMMAND SUMMARY

BR Breakpoint1[X]
 [Breakpoint2[X]
 [Breakpoint3...]]

Set one or more transient or fixed breakpoints

BRP[PassCount] Breakpoint
or
BRP Breakpoint PassCount

Set Pass type breakpoint

CLS Clear output window

CLM Clear the local, JBug11, copy of memory

CMP StartAddr EndAddr|+Length
 CompAddr

Compare two blocks of MCU memory

CMPL StartAddr EndAddr|+Length
 CompAddr

Compare two blocks of local memory

CONFIG NewValue Change the EEPROM implementation of the
CONFIG control register

CONNECT / DISCONNECT Open or close the COM port

CRC Path&FileName.rec|s19
CRCL Path&FileName.rec|s19
CRC StartAddr EndAddr|+Length
CRCL StartAddr EndAddr|+Length

Compute a CRC-16 sum for a file or a block of
MCU memory

D StartAddr EndAddr|+Length
 ToAddr

Duplicate a block of MCU memory

DL StartAddr EndAddr|+Length
 ToAddr

Duplicate a block of local memory

EBULK Erase all of EEPROM

F StartAddr EndAddr|+Length
 ByteString|CharString

Fill MCU memory with bytes or a character string

FL StartAddr EndAddr|+Length
 ByteString|CharacterString

Fill local memory with bytes or a character string

FIND StartAddr
EndAddr|+Length
 ByteString|CharacterString

Find a byte or character string in MCU controlled
memory

FINDL StartAddr
EndAddr|+Length
 ByteString|CharacterString

Find a byte or character string in local memory

G [StartAddr|* [Breakpoint1
 [Breakpoint2
 [Breakpoint3...]]]]

Go - run a program, stopping at breakpoints if
requested.

LD Path&Filename.rec|.s19
LD Path&Filename.obj|.bin
 StartAddr

Load MCU memory with a Motorola S19 format
file, or with a binary image file.

103

LDL Path&Filename.rec|.s19
LDL Path&Filename.obj|.bin
 StartAddr

Load JBug11 local memory with a Motorola S19
format file, or with a binary image file.

L [StartAddr|*
 [EndAddr|+Length]]

List MCU controlled memory

LL [StartAddr|*
 [EndAddr|+Length]]

List JBug11 local memory

LM List macro names

M StartAddr or
MM StartAddr

Modify MCU controlled memory

NEXT Search for further occurrences of string nominated
in the FIND command

NOBR [Breakpoint1
 [Breakpoint2
 [Breakpoint3...]]]

Clear all or selected breakpoints

O[Repeats] [StartAddr|*] Trace over subroutines

PAUSE|WAIT [milliseconds] Pause macro execution (same as WAIT)

R [InhReg=NewValue|
 CtrlReg|CtrlReg=NewValue]

Display and modify registers

RESET Remotely reset the target MCU

S Stop a program running on the MCU

SV StartAddr EndAddr|+Length
 Path&Filename.Ext
or
SVL StartAddr EndAddr|+Length
 Path&Filename.Ext

Save a block of MCU or local memory to an S19
or binary image file

SWITCH Toggle polarity of spare output pin

T[Repeats] [StartAddr|*] Trace a program in MCU controlled memory

TERM Open the terminal window

U[Repeats] [StartAddr|*]
or
U StartAddr|* EndAddr|+Length

Un-assemble (disassemble) a program in MCU
controlled memory

UL[Repeats] [StartAddr|*]
or
UL StartAddr|* EndAddr|+Length

Un-assemble a program in local memory

V Path&Filename.rec|.s19
or
VL Path&Filename.rec|.s19

Verify a program in MCU or local memory against
a Motorola S19 format file

VE StartAddr [EndAddr|+Length] Verify that memory is erased (all bytes $FF)

104

APPENDIX D - SETUP FOR DIFFERENT M CU’s

Using JBug11 with different members of the 68HC11 family.

Talker, Map and Overlay Files:

Chip Default
CONFIG
register

Suitable RAM talker Map file for RAM
talker

EEPROM and
EPROM
programming overlay
files

A0,
A1,
A8

$0C,
$0D,
$0F

Talk_A.BOO or
Talk_A.XOO

Talk_A.MAP Ovly_Eeprom_A.rec

OTP Eprom is not
available in ‘A’ chips

D N/A Talk1_D.BOO and
Talk2_D.rec
See note 1 below

Talk_D.MAP

E0,
E1,
E9

$0C,
$0D,
$0F

Talk_E.BOO or
Talk_E.XOO

Talk_E.MAP Ovly_Eeprom_E.rec
Ovly_Eprom_E.rec

811E2 $FF Talk_E2.BOO or
Talk_E2.XOO

Talk_E2.MAP

If using Al Williams
Talkeree:
Talk.AW.MAP

Ovly_Eeprom_E.rec

E20 $0F ? Talk_E.BOO or
Talk_E.XOO

Talk_A.MAP Ovly_Eeprom_E.rec
Ovly_Eprom_E20.rec

F1 $FF Talk_F1.BOO Talk_F1.MAP Ovly_Eeprom_F1.rec

K series Talk_K.BOO or
Talk_K.XOO
See note 2 below

Talk_K.MAP Ovly_Eeprom_K.rec
Ovly_Eprom_K4.rec

Notes:

1. The D series chips present something of a challenge to JBug11 because of the limited RAM
available for the talker. I have experimentally overcome this limitation, but only for chips able
to access external RAM memory, such as the MicroStamp11 development boards by
Technological Arts. The talker is split into two parts: the first is loaded by the normal
bootstrap loading operation; it contains the basic memory read and write routines. The first
part is then able to load the second part, which has the inherent register and SWI service
routines, as an S19 into any convenient bit of external RAM. Anyone proposing to use these
talkers must study the assembly file listings, as they will probably need to re-assemble both
parts to suit the available on-board memory.

2. The K series talkers should be treated as experimental at this stage, although from user
feedback, they appear to be satisfactory.

105

3. The A, E, E2 and F1 talkers are identical, apart from differing initial locations for the stack.

Talker Source Files

The JBug11 distribution includes assembly language source files for all the above talkers. If you wish
to re-assemble a talker, do not forget that the .BOO and .XOO files differ from the standard object
file output by an assembler in having an additional byte at the beginning. This byte, usually $FF, is
there to select the bootstrap loading baud rate - see the Motorola/Freescale M68HC11 Reference
Manual, and their application note AN1060.

Register information files

The correct register information file for the particular target chip needs to be nominated on the
Settings>General tab. This will happen automatically if use the combo box to select an MCU from the
drop-down list, otherwise the file may be selected from this table:

Chip Type Register Information File

A0,A1, A8 Regs_HC11A.csv

D0, D3 Regs_HC11D3.csv

E0, E1, E9 Regs_HC11E9.csv

E2 Regs_HC11E2.csv

E20 Regs_HC11E20.csv

F1 Regs_HC11F1.csv

K4 Regs_HC11K4.csv

KS2 Regs_HC11KS2.csv

106

Using JBug11 with different crystal frequencies

A firmware bootloader is built into the HC11 chips; this runs when the chip is reset with the MODA
and MODB pins at 0V and its function is to load the talker. This firmware expects the talker to be sent
at a baud rate of: (Crystal Frequency / 210 = Crystal Frequency/1024). For an 8 MHz crystal, this is
a baud rate of 7812.5 which is a non-standard rate (although 7680 is close enough in practice).
Because 8 MHz is the commonest frequency, the firmware is arranged to ‘fall back’ to a rate of:
(Crystal Frequency / (29 * 13) = Crystal Frequency/6656). For an 8 MHz crystal this is a baud rate
of 1201.9, close enough to 1200 to suit any UART. Whether or not the firmware falls back to the
lower rate depends upon how it interprets the initial $FF character sent by the host.

Because these rate ratios are fixed by the firmware coding, JBug11 must be set up to send the talker
at a suitable rate. The following table shows the rates necessary for a range of crystal frequencies. The
theoretical baud rates are those obtained by the ratios mentioned in the previous paragraph. The
practicable rates are those which are an exact integer division of 115200, see Baud Rates on page 17.

Crystal
Frequency

MHz

E Clock
rate

MHz

Primary talker upload
baud rate

‘Fall back’ talker upload
baud rate

Default communication
rate with talkers as-
supplied

Theoretical Practicable Theoretical Practicable Theoretical Practicable

4 1 3906 3840 601 600 4807 4800

4.1943 1.0486 4096 4096 630 629 5041 5008

7.3728 1.8432 7200 7200 1108 1107 8862 8861

8 2 7813 7680 1202 1200 9615 9600

9.8304 2.4576 9600 9600 1477 1476 11815 11520

12 3 11719 11520 1803 1800 14423 14400

16 4 15625 Not
available

2404 2400 19231 19200

16.7772 4.1943 16384 16457 2521 2504 20165 Not
available -
see note 1

When the bootloading firmware finishes loading the talker, it executes a jump to the start of the talker.
From now on, the serial communication parameters are under the control of the talker. With the
supplied talkers, the communication baud rate is set to (Crystal Frequency / (26 * 13) = Crystal
Frequency/832) but this may be changed by altering the talker source code and re-assembling. The
default communication baud rates are also shown in the above table. NOTE the communication baud
rate must be greater than or equal to the talker upload rate - see Baud Rates.

Note 1 With a 16.7772 MHz crystal, the rate of 20165 which would be expected by the
standard talker is not achievable by most PC’s. The first achievable rate is 16457, so
the talker would have to be re-assembled for this rate.

107

A, E and F1 baud rate table

The following table is based on Table 9-3 in the HC11 Reference Manual (M68HC11RM.pdf). It
shows the baud rates obtainable on an A, E or F1 chip for various common crystal frequencies. The
shaded areas are baud rates that cannot be approximated to within 3% by the rates obtainable from
the 16550 UART commonly fitted to personal computers. According to the Data sheet, the worst
case allowable mis-match in baud rates is +/- 4.5% for the 68HC11, but I don’t know what it is for
a 16550.

BAUD register bits Crystal Frequency in MHz

S
C

P
2

S
C

P
1

S
C

P
0

R
C

K
B

S
C

R
2

S
C

R
1

S
C

R
0 16.7772 16.0000 9.8304 8.3886 8.0000 7.3728 4.1943

0 0 0 0 0 0 262144 250000 153600 131072 125000 115200 65536
0 0 0 0 0 1 131072 125000 76800 65536 62500 57600 32768
0 0 0 0 1 0 65536 62500 38400 32768 31250 28800 16384
0 0 0 0 1 1 32768 31250 19200 16384 15625 14400 8192
0 0 0 1 0 0 16384 15625 9600 8192 7813 7200 4096
0 0 0 1 0 1 8192 7813 4800 4096 3906 3600 2048
0 0 0 1 1 0 4096 3906 2400 2048 1953 1800 1024
0 0 0 1 1 1 2048 1953 1200 1024 977 900 512

0 0 1 0 0 0 87381 83333 51200 43691 41667 38400 21845
0 0 1 0 0 1 43691 41667 25600 21845 20833 19200 10923
0 0 1 0 1 0 21845 20833 12800 10923 10417 9600 5461
0 0 1 0 1 1 10923 10417 6400 5461 5208 4800 2731
0 0 1 1 0 0 5461 5208 3200 2731 2604 2400 1365
0 0 1 1 0 1 2731 2604 1600 1365 1302 1200 683
0 0 1 1 1 0 1365 1302 800 683 651 600 341
0 0 1 1 1 1 683 651 400 341 326 300 171

0 1 0 0 0 0 65536 62500 38400 32768 31250 28800 16384
0 1 0 0 0 1 32768 31250 19200 16384 15625 14400 8192
0 1 0 0 1 0 1 16384 15625 9600 8192 7813 7200 4096
0 1 0 0 1 1 8192 7813 4800 4096 3906 3600 2048
0 1 0 1 0 0 4096 3906 2400 2048 1953 1800 1024
0 1 0 1 0 1 2048 1953 1200 1024 977 900 512
0 1 0 1 1 0 1024 977 600 512 488 450 256
0 1 0 1 1 1 512 488 300 256 244 225 128

0 1 1 0 0 0 3 20165 19231 11815 10082 9615 8862 5041
0 1 1 0 0 1 10082 9615 5908 5041 4808 4431 2521
0 1 1 0 1 0 5041 4808 2954 2521 2404 2215 1260
0 1 1 0 1 1 2 2521 2404 1477 1260 1202 1108 630
0 1 1 1 0 0 1260 1202 738 630 601 554 315
0 1 1 1 0 1 630 601 369 315 300 277 158
0 1 1 1 1 0 315 300 185 158 150 138 79
0 1 1 1 1 1 158 150 92 79 75 69 39

Notes:

1 Default boot-loading baud rate. If the initial $FF character of the talker is not received as $FF,
then the bootloading rate falls back to the following:

2 Fall-back bootloading baud rate.

3 Default communication baud rate. This may be changed by re-assembling the talker source file.

108

APPENDIX E - COMMAND-LINE ERROR MESSAGE SUMM ARY

Command Line Errors

There are numerous ways in which what is typed on the command line may not be appropriate. If
JBug11 detects an error, it replies by echoing the command line to the Command history window with
a left-pointing arrow and an explanatory message. The following table lists all the errors that may
occur. Most are self-explanatory; brief guidance notes are included where appropriate:

Command line error message Notes

Unrecognized command Basic error message

Project error - command not available Project file has errors. Open 'Settings', then
click 'OK' for a list of the errors

Not available when disconnected COM port is closed

Requires talker initialization MCU needs resetting, and the talker needs to
be uploaded to the MCU

Not available when Stopped

Not available when running Command cannot be used while a program is
being run on the MCU

Not available when tracing Command cannot be used while a program is
being traced on the MCU

Not available when stopped at breakpoint Command cannot be used while a program on
the MCU is stopped at a breakpoint

Already disconnected

Already connected

Switch not available The General Purpose switching function has
not been set up

Switch is already ON

Switch is already OFF

Address(es) overlap undefined memory Command arguments, or the loading
addresses in an S19 file, overlap undefined
memory

Address(es) overlap RAM (should never occur)

Address(es) overlap Control Registers Command arguments, or the loading
addresses in an S19 file, overlap the control
registers

Address(es) overlap ROM Command arguments, or the loading
addresses in an S19 file, overlap undefined
ROM

109

Address(es) overlap EEPROM Command arguments, or the loading
addresses in an S19 file, overlap EEPROM.
Some commands cannot write to EEPROM

Address(es) overlap EPROM/OTP ROM Command arguments, or the loading
addresses in an S19 file, overlap EPROM.
Some commands cannot write to EPROM

Address(es) overlap external RAM

Address(es) overlap byte-written memory Command arguments, or the loading
addresses in an S19 file, overlap byte-written
memory.
Some commands cannot write to byte-written
memory

Address(es) overlap page-written memory Command arguments, or the loading
addresses in an S19 file, overlap page-written
memory.
Some commands cannot write to page-written
memory

Address span not allowed Some commands can only write one type of
memory at a time

Comparison address ranges overlap

Must follow FIND or NEXT The NEXT command must immediately follow
a use of the FIND or NEXT command

Previous FIND failed NEXT cannot be used if a previous FIND or
NEXT was unsuccessful

Register not found The register name supplied to the Register
Display and Change command was not found.

Argument out of range

Remote reset not available The Remote Reset function has not been set
up

Formatting error in S19 file This message will be followed in the Output
Window by a supplementary message in red
type:
!! FileName - Checksum error in line xx
!! FileName - Length error in line xx
!! FileName - Unknown record type in line xx
!! FileName - Invalid character in line xx
!! FileName - File has overlapping addresses

Cannot change PC The Register command cannot be used to
change the value of the Program Counter

110

Eeprom overlay error An error has occurred in the overlay for
accessing Eeprom. This will be followed in the
Output Window by a supplementary message
in red type:

!! FileName - File not found
!! FileName - Checksum error in line xx
!! FileName - Length error in line xx
!! FileName - Unknown record type in line xx
!! FileName - Invalid character in line xx
!! FileName - File has overlapping addresses

This overlay is specified in Settings>Overlays

Eprom overlay error Ditto for accessing Eprom

Byte-writing overlay error Ditto for accessing byte-writable external
memory

Page-writing overlay error Ditto for accessing page-writable external
memory

Indirect register overlay error Ditto for accessing indirect memory registers.
This overlay is specified in Settings>Ind Mem

Indirect memory overlay error Ditto for accessing indirect memory
This overlay is specified in Settings>Ind Mem

PTCON is set in BPROT CONFIG cannot be altered because this bit is
set

Talker in EEPROM cannot write EE/Eprom

No EEPROM memory is defined

BPROT value disallows erasing One or more of the BPRT bits are set in the
BPROT control register

BPROT value may disallow writing One or more of the BPRT bits are set in the
BPROT control register

Duplicate breakpoint(s) not allowed

Breakpoint(s) not found

Argument(s) not recognized

Too few arguments

Too many arguments

Address range error Usually because EndAddress is less than
StartAddress

String exceeds 32 bytes

Command not available in macros

111

Command only available in macros

BEGIN not found The 'BEGIN' directive was not found in a
macro invoked from the command line

No library macros found

File not found

Unrecognized file type Files for loading or saving can only have the
extensions: .rec, .s19, .bin, or .obj

Binary file is too large The number of bytes in the file exceeds the
available memory on the MCU

Invalid opcode at start address No illegal opcode jump vector is defined

Invalid SWI at start address No SWI service jump vector is defined

Command not implemented

112

APPENDIX F - RS232 COMMUNICATIONS

Introduction

The RS232 standard, now more correctly the EIA232 standard, first appeared in the 1960's. It was
originally written to standardize the interconnection of terminals and modems, in the days when one
mainframe computer hosted many remote terminals. In the standard, a terminal is referred to as a DTE
(Data Terminal/Terminating Equipment), and the modem as a DCE (Data Communication
Equipment). This primer is a brief introduction to the standard, and to the signaling protocol usually
employed, from the perspective of a JBug11 user who just wants to 'get it all to work'

Physical Connectors

The DTE is traditionally fitted with a male 'D' connector, and the modem (DCE) with a female one.
When the IBM personal computer first appeared it had serial or 'COM' ports which were implemented
as RS232 standard 25-pin male 'D' connectors on the back panel. When the AT version of the PC
appeared, IBM began to adopt a nine pin version of the 'D' connector, and this is now universal on
personal computers that still have hardware serial ports.

One pin is reserved as the common signal return or ground pin (5). Two pins are used for full duplex
data transfer (2,3). The remaining six pins all carry handshaking information to control the flow of data
on TxD and RxD.

The pinout, looking on the outside of the male DB9 connector as found on the back of a PC, is as
follows:

113

The pins are labeled with a functional description as follows. 'IN' and 'OUT' refer to the signal
directions as they apply to the DTE (personal computer):

Pin
Number

Abbreviation IN or OUT Description

1 CD (or DCD) IN Carrier Detect. Used by a modem (DCE) to tell the
DTE that it has detected a carrier signal

2 RxD IN Received Data. Data sent by the DTE to the DCE

3 TxD OUT Transmitted Data. Data sent by the DTE to the DCE

4 DTR OUT Data Terminal Ready. Used by the DTE to tell the
DCE that it is operational.

5 GND Ground. Common signal return.

6 DSR IN Data Set Ready. Used by the DCE to tell the DTE
that it is operational.

7 RTS OUT Request to Send. Used by the DTE to signal the
DCE that it may begin sending data.

8 CTS IN Clear to Send. Used by the DCE to signal to the
DTE that it may begin sending data.

9 RI IN Ring Indicator. Used by a modem (DCE) to tell the
DTE that an incoming call has been detected.

In the case of JBug11, the personal computer host is a DTE and the target board is a DCE. As
explained in Appendix B, the only pins that must be connected are RxD, TxD and GND. Remote
resetting will require a connection to DTR (or RTS) also. No other handshaking signals are needed;
if connected, they will be ignored.

Voltages, Impedances and Biasing

RS232 is referred to as an 'unbalanced' signaling system in that all the signals are referred to a common
ground conductor. This is inherently more susceptible to crosstalk and common-mode sources of
interference than, for example, the balanced system described in RS422. Binary state signaling is used,
with one state represented by positive voltage on the signaling pin of anywhere between +3V and
+15V with respect to the common ground pin (pin 5); and the other state by a negative voltage
between -3V and -15V. Voltages within the transition region from +3V to -3V are meaningless.

The source impedance of a signal driver should be such that accidental cross-connection with another
output cannot damage either driver even where one is outputting a positive voltage and the other a
negative one.

The default state of all signals is de-asserted, i.e. a negative signal voltage. The line receiving devices
should be biased so that they 'see' a negative voltage if the cable is disconnected, or if the cable is
connected but the transmitting end is unpowered. But note that biasing the RxD pin so that it 'sees' a
positive voltage in the absence of a connecting cable might be used to give an automatic indication of
a break in the cable - see the section on the break signal below.

114

Logic Levels

It is this aspect which causes the most bewilderment among users, largely because of the counter-
intuitive naming conventions used. The negative voltage is referred to as a logic 1 or 'mark' condition
and a positive voltage is referred to as logic 0 or 'space' condition.

A driver transmitting data on the TxD pin idles in the logic 1 or 'mark' state, i.e. with a negative
voltage output. In the absence of data being actively sent from the remote device, the voltage on the
RxD pin will also be negative, because that is the idling state of the driver at the 'far' end of the link.

In the case of the control signals, a de-asserted signal is one in the 'mark' or negative voltage state. For
example, DTR is asserted if it goes from the negative (logic 1, mark) state to the positive (logic 0,
space) state, as here:

It may be noted that all of the common RS232-to-logic level converters (MAX232, 1488,1489) invert
the polarity of the transmitted and received signals. So a TTL 'high' level, logic 1, +5V, corresponds
to a negative RS232 voltage (somewhere between -3V and -15V).

Data Protocols

Serial data on an RS232 link is transmitted asynchronously, i.e. a separate clock signal is not required
and the start of a data byte can occur at any time. To achieve this, a logic 0 start bit is sent, followed
by the data bits, and ending with a logic 1 stop bit. I will only consider here the commonest 8N1
format - a start bit followed by Eight data bits, No parity bit and One stop bit. The data bits are sent
in least-significant-bit first order. All the bits (start, data and stop) have a duration equal to the
reciprocal of the baud rate. Note that the technical definition of baud rate is more complex, and it only
happens that baud rate and bit rate are equal for the simple binary signaling system used on RS232
links. To send a single byte takes 10 bit times (1.042 ms at 9600 baud). Since a start bit can
immediately follow a stop bit, at 9600 baud the maximum throughput is 960 bytes per second.

Here is the letter 'M' in ASCII coding (hex 4D, binary 01001101) sent according to the 8N1 format
at 9600 baud, as it appears on the TxD pin:

115

Break Signal

The RS232 standard also specifies a signal called a Break, which is the sending of continuous Space
values (no Start or Stop bits). I believe the name dates from the days when many news teleprinters
used to be connected in series, and the break signal could be used to alert all machines. When there
is no electricity present on the data circuit, the line is considered to be sending Break.

The Break signal must be of a duration longer than the time it takes to send a complete byte plus the
Start and Stop (and Parity, if any) bits. The minimum signal which will be considered a break at 9600
baud in 8-N-1 format is shown below:

Not all UARTs will reliably detect a break signal of the minimum length. This applies particularly to
USB-to-Serial adaptors.

116

APPENDIX G - GETTING STARTED and QUICK TOUR

Installation

Double click on the self-installing exe file, named something like ‘Install-JBug11-xyz.exe’ which you
have downloaded from the web site. This is a console application, so will start in a DOS box. You
will be given the chance to change the default installation folder (C:\Program files\JBug11) if you wish
to install it somewhere else.

The installation utility should place an icon on the desktop; if it does not, you can right-click on
JBug11.exe and use the context menu to Send To>Desktop (create shortcut).

Launch

Launch JBug11. If this is the first time that the program is run, you will receive an error message,
which may be ignored at this stage (answer OK). If JBug11 has been previously installed, and a newer
release of the program is being started for the first time, a dialog will appear to allow the smooth
transfer of configuration information from the previous version.

Adjusting the Displayed Form

As supplied, the main form of the program has quite a small size, and you may wish to increase it using
one of the predetermined layouts available under the View menu item.

Connecting the Target Board

Connect the target MCU target board to one of the PC serial ports. The minimum hardware
configuration is shown in Appendix B - Hardware. A remote reset capability is a luxury, and not
necessary to get up and running, although some form of on-board reset button will still be required.
Note that the MCU must be wired to come out of reset in Special Bootstrap Mode, i.e. the MODA
and MODB pins must be at logic zero during reset. If you use a USB-to-serial adaptor, then read
USB-to-Serial Adapters on page 13 as not all such adaptors are suitable.

Configuring JBug11

• On the main menu, click 'File' and then 'New Project...'. The Settings dialog will open at the
'General' tab.

• Select the MCU which are using from the drop-down list. This will automatically update the
Talker, Overlay and Memory information.

• Move to the 'COM Port' tab in Settings. Select the COM port to which you connected your
target board.

• Select the frequency for the crystal on the target board, and accept the default baud rates
offered when the drop-down list closes. If the crystal you are using does not appear in the list,
refer to Settings>COM Port.

• If your Hardware allows remote resetting, tick the checkbox 'PC controls reset' and select the
control pin to use and the pulse polarity.

117

• Close the Settings dialog by clicking 'OK'.

Loading the Talker

• Click the 'Connect' speedbutton at the left hand end of the row of buttons.

• Reboot the MCU. Either using the reset button on the target board, or, if the appropriate
hardware is in place, by clicking the 'Reset' speedbutton.

• JBug11 should now send the talker. If it does so, a listing of the talker will appear in the output
window, the status line should read 'Stopped' and 'RAM talker loaded'. If a 'Comms Error'
dialog appears, then there is a communication problem. If this persists, consider sending an
Error Report, see page 98.

Using Commands

The monitoring and de-bugging functions of JBug11 are invoked by typing in Commands into the
Command Edit Box, see page 29. Some important commands, such as those to load a file to the MCU,
are also duplicated in the Actions menu. See the Quick Tour below for some initial commands to try.

Beginner’s Advice

If you are quite new to programming for the HC11 series, I cannot do better than repeat the advice
given in the Starter Package manual for the Technological Arts micro controller boards: '..start with
something that works, and then add new features incrementally'. The very simple 'Looptest' program
in the \Samples\ folder is a possible starting point.

Happy Debugging!

QUICK TOUR

This is a quick introduction to the capabilities of JBug11.

1. Listing Memory

If you are able to list (or dump) memory contents then at least you know that the PC is interfacing
correctly with the talker on the MCU. Type the following example of the List Memory command
(page 68) on the command line, and press <Enter>:

L 0

Note the space between the 'L' and the zero. This should produce a listing of the first sixteen addresses
on the MCU. Why sixteen? - because this is the default for the number of locations to list. It may be
changed on the Settings>General tab. If you type:

L 0 2

then you will get a listing of the first three locations only. Note that address arguments supplied to
JBug11 commands always specify an inclusive range.

118

2. Reading a control register

Try using the Register Display and Change command (page 73). Type on the command line:

R CONFIG

This should produce something like:

103F CONFIG [$0D,#13] 0 0 0 0 NOSEC NOCOP ROMON EEON

Note that the individual bits are named (where appropriate) and displayed in bold if set.

3. Loading an S19 file

Try loading an S19 file to EEPROM memory. The 'Samples' sub-folder of the JBug11 installation
folder contains a file named 'Looptest.asm' which has been assembled to start at various addresses,
including $B600 in the file 'Looptest_B600.rec'. If you have free EEPROM at $B600 then you can
proceed to load Looptest_B600.rec immediately, otherwise choose another loading address or re-
assemble 'Looptest.asm'. As this is a write to Eeprom, it may be necessary to alter the BPROT register
to a suitable value. If the chip you are using has a BPROT register, give the command:

R BPROT=10

To load the file, click the 'Load S19 to MCU' speedbutton, and navigate to the 'Samples' sub-folder.
Open the file Looptest_B600.rec. The output window should display the messages:

LD "[JBug11]\Samples\Looptest_B600.rec"
Loading overlay for on-chip EEPROM
Writing EEPROM B600..B630
Unloading overlay
Loading complete

4. Unassembling Memory

Confirm that you have loaded the 'Looptest' file satisfactorily by unassembling it. Type (upper or lower
case):

U B600 B630

Compare the listing in the output window with that in the LOOPTEST_B600.LST file (also in the
\Samples\ subfolder).

5. Unassembling with Labels

Open Settings>Debug, and check 'As last loaded S19 file' in the Symbol Table panel. Close Settings
by clicking the 'OK' button. Recall the previous unassembly command by hitting the up arrow once.
Hit <enter>. Now the listing should include the symbolic label information for 'Looptest'.

You may view the currently-loaded symbol table by clicking 'Symbol Table' in the View menu. The
symbol table display may be adjusted for height, and moved to some other part of the screen - its
layout will be remembered in the Windows Registry for the next time it is used.

119

6. Verifying Memory

You can also verify a loaded program by using the Verify command (page 83). Click on
Actions>Verify S19... (in the main menu), and select Looptest_B600.rec again in the file-open dialog.
This should produce the message 'MCU memory verifies OK' in the output window.

7. Running a Program

Type:

G B600 <enter>

The status line will change to 'Running' and the Output Window will display information on the
instruction and registers at the starting point, $B600 (if enabled in Settings>Debug). The instruction
at the starting point, $B600, also appears in the 'Start / Break Points' display in green and in brackets.

The Looptest program ends with an endless loop, so to stop the program, give the Stop command
(page 76):

S

The output window will then display information on the stopping point, $B615.

8. Tracing a Program

Type:

T B600 <enter>

Depending on the selections in Settings>Debug, the output window will display information on the
instruction and registers at the starting point, $B600, and at the break point ($B603). The status line
should show 'Tracing - stopped at breakpoint'. The Start / Break Points display on the main form
shows an abbreviated form of the instruction at the point where you began tracing, in green, and for
the breakpoint, highlighted in red because the program has halted there. The 'L/U' edit box shows the
default starting address for list or unassemble operations - it is updated during tracing to reflect the
program breakpoint. Note also that the command edit box is pre-filled with 'T' so that simply pressing
<enter> will trace the next instruction. Note that tracing in EEPROM is a bit slower than tracing in
RAM because of the extra work involved in changing EEPROM bytes.

9. Watching a Variable

Add an address to monitor during tracing. Right-click in the Watch Window (main form, lower right-
hand corner) and select 'Add...' The Add to Watch dialog opens. In the Looptest program, the counter
is stored in $00C0 so type this address in the 'User Defined' panel (in lower or upper case), then click
'Add & Close'. Now each time you repeat the trace command, the current value of address $00C0 is
updated in the watch window.

If you have arranged for the automatic loading of a symbol file according to the last S19 file loaded,
then you may open the Symbol Table/Register Display, select 'Counter' from the Symbol Display, and
click 'Add to Watch'.

120

10. Erasing

Try erasing the EEPROM containing Looptest. Type:

EBULK

JBug11 will reply with a short confirmatory dialog, answer OK and JBug11 should zap your program.
(If you are still tracing, JBug11 will object, and you will need to issue the 'Stop' command before
giving the 'EBULK' one). You can check by using the Verify Erase command (page 84):

VE B600 B628

******************** This concludes the quick tour. ***********************

121

APPENDIX H - DISTRIBUTION FILES

The installation file Install-JBug11-xyz.exe sets up the following files, in the sub-directories listed
below. Note that the JBug11 printed manual itself is an Adobe Acrobat (.pdf) file which must be
downloaded from the web site separately.

Primary installation folder:

ReadMe.txt General set-up instructions and late-breaking information
JBug11.exe The main monitor/debugging program

InstallLib.dll
UnInstall.exe Files connected with installing and uninstalling

Sub-folder ..\Help\

JBug11.HLP
JBug11.CNT On-line help files.

Sub-folder ..\MCU\

MCUData.cfg Default configuration information for MCU's

Sub-folder ..\Opcodes\

HC11_Opcodes.csv Opcode and instruction information. Applies to all chips

Sub-folder ..\Overlays\

Ovly_Eeprom_A.rec Talker overlay file for writing to EEPROM on A1 and A8 series chips
Ovly_Eeprom_E.rec Talker overlay file for writing to EEPROM on E1,E2,E20 and E9 chips
Ovly_Eeprom_F1.rec Talker overlay file for writing to EEPROM on F1 chips
Ovly_Eeprom_K.rec Talker overlay file for writing to EEPROM on K chips

Ovly_Eprom_E.rec Talker overlay file for programming EPROM on 711E9 chips
Ovly_Eprom_E20.rec Talker overlay file for programming EPROM on 711E20 chips
Ovly_Eprom_K4.rec Talker overlay file for programming EPROM on 711K4 chips

Ovly_Eeprom_A.asm
Ovly_Eeprom_E.asm
Ovly_Eeprom_F1.asm
Ovly_Eeprom_K.asm
Ovly_Eprom_E.asm
Ovly_Eprom_E20.asm
Ovly_Eprom_K4.asm Assembly language source files for the above.

Ovly_Page_AT28C256.asm
Ovly_Page_AT29C256.asm Sample talker overlay file for external memory that requires

writing within a page at a time, such as EEPROM or FLASH.
This file will need recompiling to suit the memory that you have

122

available. The source code is provided. See Writing External
Memory on page 23.

Ovly_25LC640_RWMem.rec
Ovly_25LC640_RWReg.rec Talker overlay files for reading and writing to indirectly

addressed (SPI) Microchip© 25LC640 serial eeprom such as
is found on the BotBoard+

Ovly_25LC640_RWMem.asm
Ovly_25LC640_RWReg.asm Source files for the above which may also be used as a starting

point for writing overlays to suit other kinds of indirectly-
addressed memory

Ovly_Eprom_711D3.asm
Ovly_Eprom_711D3.rec Source and overlay for programming the EPROM on a 711D3.

The overlay should be reassembled with a different time delay
factor if crystals other than 8 MHz are used.

Sub-folder ..\Projects\ Default location for project files. The distribution includes three pre-
written project file, as follows:

BotBoard+.jbp
MicroStamp11.jbp
MicroStamp11_Turbo.jbp Starter project files for the Technological Arts MicroStamp11 boards

Sub-folder ..\Registers\

Regs_HC11A.csv Control register information for A series chips

Regs_HC11D3.csv
Regs_HC711D3.csv Control register information for D series chips

Regs_HC11E9.csv Control register information for E series chips
Regs_HC11F1.csv Control register information for the F1 chip

Regs_HC811E2.csv Control register information for E2 series chips
Regs_HC711E20.csv Control register information for E20 series chips

Regs_HC711K4.csv
Regs_HC711KS2.csv Control register information for K series chips

Regs_25LC640.csv Memory access registers on the 25LC640. Provided for use with the
BotBoard+

Sub-folder ..\Samples\

Looptest.asm Elementary HC11 program to demonstrate the tracing of branching
instructions

Looptest_0000.rec S19 output of above program, assembled to start at $0000

123

Looptest_8000.rec S19 output of above program, assembled to start at $8000
Looptest_B600.rec S19 output of above program, assembled to start at $B600

LOOPTEST_0000.LST
LOOPTEST_8000.LST
LOOPTEST_B600.LST Assembly listings of the above files

Looptest_0000.sym
Looptest_8000.sym
Looptest_B600.sym Symbol table files for the above

Sample 1.mcr Simple demonstration macro library

TermDemo.asm HC11 assembly language program to demonstrate the use of the
terminal window. See Terminal Demonstration Program.

User SWI Test.asm Program to demonstrate tracing through a user-placed SWI.

ISR_Demo.asm Program to demonstrate setting a breakpoint, and tracing, within an
interrupt service routine

Illop_Demo.asm Program to demonstrate tracing through an illegal opcode.

Sub-folder ..\Talkers\

JBug_Talk.asm Assembly language source used to generate talkers. This file may be re-
assembled for any A, E or F1 chip for either a .BOO or .XOO type
talker - see Talkers.

Talk_A.BOO Talker image file for MC68HC11A series devices, using the SCI
interrupt (also the 811E2)

Talk_A.XOO Talker image file for MC68HC11A series devices, using the XIRQ\
connection and XIRQ interrupt (also 811E2)

Talk_E.BOO
Talk_E.XOO Talker image files for MC68HC11E series devices

Talk_E2.BOO
Talk_E2.XOO Talker image files for MC68HC811E2 series devices. Actually these

are identical with the files for the A series chips, being suitable for
MCU's with only 256 bytes of RAM

Talk_F1.BOO Talker image file for MC68HC11F1 devices, using the SCI interrupt

Talk_K.BOO
Talk_K.XOO Talker image files for MC68HC(7)11K4/S2 devices

Talk_A.map
Talk_E.map
Talk_E2.map

124

Talk_F1.map
Talk_K.map Address mapping files for the above talkers

Talk_K.asm Assembly language source used to generate K series talkers

Talk_AW.map Map file for an Al William's style talker - see Tracing in EEPROM on
page 25

Talk_Eeprom.asm Assembly language listing of a talker which may be loaded to
EEPROM as an EEPROM-resident talker. Will need re-assembling to
suit your memory layout. Don't forget to then adjust the map file also.

Talk_Eeprom_E2.rec
Talk_Eeprom_E2.map Sample EEPROM-resident talker and map file suitable for uploading

to the EEPROM of an E2 chip (EEPROM starting at $E800)

Sub-folder ..Talkers\Talk_D\ Subfolder containing 'D' series talker files, with particular
emphasis on the MicroStamp11. These are:

Talk1_D.asm
Talk2_D.asm General assembly language listings suitable for modification to

suit your particular D-series board.

Read_Me.txt Important information for users of the Technological Arts
MicroStamp11 target boards.

Talk1_D_MS11.asm
Talk2_D_MS11.asm
Talk1_D_MS11.BOO
Talk2_D_MS11.rec
Talk_D_MS11.MAP Talker and map files for the MicroStamp11

Talk_711D3.BOO
Talk_711D3.map
Talk_711D3.asm Talker, map file and source for programming EPROM on the

711D3. Use in conjunction with Ovly_Eprom_711D3.rec

125

APPENDIX J - JBUG11 REVISION HISTORY & KNOWN BUGS

Revision History

Version 5.0.0 (April 22, 2006) First publishing of version 5

Version 5.0.1 (July 1, 2006) 1. Bug fix: Could not open S19 format files that contained S0
(comment) lines - program went into an endless loop
2. Modify Memory command now launched by M as well as MM
3. Project file format slightly revised (previous files still accepted)
4. This revision appears to work OK with Win 98

Version 5.0.2 (September, 2006) 1. Automatic selection of the correct files in 'Settings' improved.
2. Automatic selection of baud rates
3. 'Ignore echo errors on write' added back in
4. Pre-written project files available for the MicroStamp11
5. Reporting of set BPRT bits in BPROT improved.
6. Version 5 Manual issued.

Version 5.0.3 (March, 2007) 1. Bug fix: Serial port communication rate incorrectly initialized
when using a talker in external memory
2. Bug fix: Disassembly of BRCLR and similar instructions was
incorrect
3. Bug fix: Play Macro failed because of spurious inclusion of an
'&' character
4. Supplied K talker file rewritten to use a comms baud rate of
9600 with an 8 MHz crystal

Version 5.0.4 (March 2007) 1. Bug fix: CCR (condition code register) failed to display,
although program worked OK

Version 5.1.0 (April 2007) 1. Code added to allow writing to indirectly-addressed memory,
such as an SPI (I2C) serial Eeprom

Version 5.1.1 (August 2007) 1. Bug fix: Macro names were wrongly inserted by the drop-down
menu adjacent to the 'Play' button.
2. 'CONFIG' command improved, and associated help topic revised.

Version 5.1.2 (September 2007) 1. Bug fix: Progress bar failed to work correctly if an overlay was
needed to load a S19 file

Version 5.1.3 (May 2008) 1. Bug fix: Binary files could not be loaded to EEPROM
2. Bug fix: Duplicate and Fill commands could misbehave in the
'Local' mode (minor problem)

Version 5.1.4 (May 2008) 1. Bug fix: Parameter substitution in macros

Version 5.1.5 (February 2009) 1. Boot Script may now be initiated on opening the COM port (suits
setups where the talker is in ROM)
2. Bug fix: Register information corrected for E9 chips

Version 5.2.0 (March 2009) 1. External EEPROM writing capability extended
2. Improved reporting of errors in S19 record files
3. Color may be used to help differentiate ‘set’ bits in the output
window display of the Register Display and Change command.
4. Revised action of the <Backspace> key in the terminal
5. Bug fix: It was possible for the terminal windows to fail to
recognize newline character strings sent by the MCU

Version 5.2.1 (October 2009) 1. New talker and overlay file for EPROM programming the
MC68HC711D3

126

Known Bugs:

• Does not display correctly on operating systems, such as Microsoft Vista®, when using displays set
to 120 dpi or more. Display is effectively unusable. The same sort of problem may occur on earlier
operating systems if large font sizes are selected in ‘Display Properties> Appearance’.

APPENDIX K - CHANGES: Version 4 to Version 5

Users of JBug11 version 4xx will find many changes in version 5. This appendix addresses some "how
do I do that?" questions:

1. Alter HPRIO on boot

Version 5 does not have check and edit boxes for altering HPRIO - these are replaced by a more
flexible system which allows any number of registers to be changed after booting. This is the Boot
Script facility (page 87).

To alter HPRIO to, say, $E5 on boot, you should add the line:

R HPRIO=E5

to the Boot Script edit box on the Settings>Macros tab, and select the ‘After Booting’ radio button.
The import utility (see following paragraph) will automatically make the necessary transfer of data
from version 4xx to 5xx.

2. Save/Recall project configurations

Version 4 could store up to ten sets of configuration information in the Windows Registry which were
accessed by the Save/Recall dialog. Version 5 stores this information in plain text files, called Project
Files. There is no limit to the number of projects with this system (until your hard disk is full), and
backing up and briefcase working are greatly simplified. To recover your version 4 projects, use the
File>Import... menu item which will open the Import dialog (page 12).

3. Alter CONFIG

Version 5 has the specialized Altering CONFIG command (page 59) to change the CONFIG register
where it is implemented as an EEPROM byte. Using the 'R' command will only attempt to change the
RAM latched copy of CONFIG.

4. Add items to the Watch Window

The speedbuttons have disappeared from above the Watch Window in version 5. To add an item to
the window, either:

• Use the View menu to open the symbol/register display, or
• Use the right-click context menu in the Watch Window

127

5. Modify the CPU inherent registers

Besides using the Register Display and Change command, ACCA, ACCB, IX, IY, SP and CCR may
be modified before running a program by directly editing their values in the register display.

6. Use a menu item to upload a file

The menu options for loading S19 files, etc. used to be under 'File' in the Main Menu. These are now
under 'Actions'.

7. Save the Output Window to a text file

Right-click in the Output Window, choose 'Select All', right click again, choose 'Copy'. This will copy
the contents to the clipboard from where it may be pasted into any text editor.

8. Use command-line switches

Command-line switches, which affect the program configuration at launch, are not supported in
version 5.

9. Load an S19 file on boot

Add the appropriate Load command to the Boot Script, see Load Memory. Again, the import utility
handles this automatically.

10. Load a macro on boot

Go to the Settings>Macros tab and tick the 'Associate current macro with Project' check box. Make
sure that the macro library you wish to have open automatically is the one currently visible in the
macro editor. This macro library file will then be re-opened automatically when JBug11 next starts up,
and will therefore be available at re-booting.

11. Use local commands only

JBug11 version 4xx had an 'Allow local commands only' check box which, if ticked, would give an
error message whenever a command was given which did not have the 'local' specifier (e.g. 'LD'
instead of 'LDL'). This has been dropped in Version 5, because the local variant of the commands may
always be used when disconnected (COM port closed).

12. Launch the calculator

The calculator is referred to as the Base Converter in version 5xx. Use the menu item on the View
menu to launch it, or type Ctrl+K as before.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	1-1
	1-2
	1-3
	1-4
	1-5

	Page 8
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11

	Page 9
	1-12
	1-13
	1-14

	Page 10
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	Project Files

	Page 11
	1-21
	1-22
	Remote Reset

	Page 12
	1-23
	1-24
	General-Purpose Switching
	1-25
	1-26
	Local and MCU Memory
	1-27
	1-28
	Accessing Expansion Memory
	1-29
	Import
	1-30

	Page 13
	1-31
	1-32
	USB-to-Serial Adapters

	Page 14
	1-33
	Talkers
	1-34
	1-35

	Page 15
	1-36
	1-37
	Talker Overlay Files

	Page 16
	1-38
	Activating the Talker
	1-39

	Page 17
	1-40
	1-41
	Baud Rates

	Page 18
	1-42
	1-43
	Talker Map Files

	Page 19
	Page 20
	1-44
	1-45
	Writing to MCU-Controlled RAM
	1-46
	Writing On-chip EPROM and EEPROM
	1-47
	1-48
	Writing to EEPROM

	Page 21
	1-49
	1-50
	Managing the BPROT Register
	1-51
	EEPROM mapping

	Page 22
	1-52
	1-53
	Writing to EPROM

	Page 23
	1-54
	1-55
	Writing External Memory
	1-56
	1-57
	1-58
	1-59

	Page 24
	1-60
	Debugging
	1-61
	1-62
	Breakpoints
	transient bp
	fixed bp
	pass bp
	1-63
	Setting and Clearing Breakpoints

	Page 25
	1-64
	1-65
	Tracing in EEPROM
	1-66
	1-67
	SWI in user code

	Page 26
	1-68
	1-69
	Illegal opcodes

	Page 27
	1-70
	1-71
	Screen Layout

	Page 28
	1-72
	1-73
	1-74
	Speedbuttons
	1-75
	Output Window

	Page 29
	1-76
	Command History Window
	1-77
	1-78
	Command Edit Box

	Page 30
	1-79
	1-80
	1-81
	Information Sidebar
	1-82
	1-83

	Page 31
	1-84
	Start / Break Points
	1-85

	Page 32
	1-86
	1-87

	Page 33
	1-88
	1-89
	View Menu

	Page 34
	1-90
	1-91

	Page 35
	1-92

	Page 36
	1-93
	1-94
	1-95
	Keyboard Shortcuts

	Page 37
	1-96
	1-97
	Symbol Table/Register Display
	1-98
	1-99
	Base Converter

	Page 38
	1-100
	Configuration
	1-101
	Settings Dialog
	1-102
	Settings>General

	Page 39
	Page 40
	1-103
	Settings>COM Port

	Page 41
	Page 42
	1-104
	Settings>Macros

	Page 43
	1-105
	Settings>Debug

	Page 44
	Page 45
	1-106
	Settings>Talkers

	Page 46
	Page 47
	1-107
	Settings>Overlays

	Page 48
	1-108
	Settings>Memory

	Page 49
	Page 50
	1-109
	Settings>Notes
	1-110
	Settings>Ind Mem

	Page 51
	Page 52
	1-111
	Commands
	1-112
	1-113

	Page 53
	1-114
	1-115
	Path Tokens

	Page 54
	1-116
	1-117
	Labels instead of Addresses

	Page 55
	1-118

	Page 56
	1-119
	Set Breakpoints
	1-120
	1-121
	Set Pass Breakpoint

	Page 57
	1-122
	1-123
	Clear Breakpoints
	1-124
	Clear Output Window
	1-125
	Clear Local Memory

	Page 58
	1-126
	Compare Memory

	Page 59
	1-127
	1-128
	Alter CONFIG

	Page 60
	1-129
	1-130
	Connect / Disconnect

	Page 61
	1-131
	1-132
	Cyclic Redundancy Check

	Page 62
	Page 63
	1-133
	Duplicate Memory
	1-134
	1-135
	Bulk Erase EEPROM

	Page 64
	1-136
	Fill Memory

	Page 65
	1-137
	Find Bytes

	Page 66
	1-138
	Find Next

	Page 67
	1-139
	1-140
	Go \(Run\)

	Page 68
	1-141
	List Memory
	1-142

	Page 69
	1-143
	1-144
	Load Memory

	Page 70
	1-145
	List Macros

	Page 71
	1-146
	1-147
	Modify Memory

	Page 72
	1-148
	Pause & Wait

	Page 73
	1-149
	1-150
	Register Display and Change

	Page 74
	1-151
	1-152
	Reset
	1-153
	1-154
	Reset Pass Count

	Page 75
	1-155
	1-156
	Save Memory

	Page 76
	1-157
	1-158
	Stop
	1-159
	Launch Terminal Window

	Page 77
	1-160
	Trace

	Page 78
	1-161
	1-162
	Step Over

	Page 79
	1-163
	1-164
	Switch

	Page 80
	1-165
	Unassemble
	1-166

	Page 81
	1-167
	1-168
	Using a Symbol Table

	Page 82
	Page 83
	1-169
	1-170
	Verify

	Page 84
	1-171
	1-172
	Verify Erase

	Page 85
	1-173
	1-174
	Indirect Memory Commands

	Page 86
	1-175
	Automation
	1-176
	1-177
	1-178
	Macros

	Page 87
	1-179
	Boot Script
	1-180

	Page 88
	1-181
	1-182
	Autostart Macro
	1-183
	1-184
	Replaceable Parameters

	Page 89
	1-185
	Playing and Recording Macros
	1-186
	1-187

	Page 90
	1-188
	1-189
	1-190
	Macro Editor

	Page 91
	Page 92
	1-191
	1-192
	Terminal Window
	1-193
	1-194

	Page 93
	1-195

	Page 94
	1-196

	Page 95
	1-197
	Terminal Window Settings

	Page 96
	1-198
	Terminal Demonstration Program

	Page 97
	1-199
	Errors
	1-200
	Communication and Echo Errors
	1-201
	Comms Error
	1-202
	Echo Error

	Page 98
	1-203
	1-204
	Diagnostics
	1-205
	1-206
	Error Report
	1-207
	1-208

	Page 99
	APPENDIX A
	1-209

	Page 100
	APPENDIX B
	1-210

	Page 101
	Page 102
	APPENDIX C
	1-211

	Page 103
	Page 104
	APPENDIX D
	1-212

	Page 105
	Page 106
	Page 107
	Page 108
	APPENDIX E
	1-213

	Page 109
	Page 110
	Page 111
	Page 112
	APPENDIX F
	1-214

	Page 113
	Page 114
	Page 115
	Page 116
	APPENDIX G
	1-215

	Page 117
	QUICK TOUR

	Page 118
	Page 119
	Page 120
	Page 121
	APPENDIX H
	1-216

	Page 122
	Page 123
	Page 124
	Page 125
	APPENDIX J
	1-217

	Page 126
	APPENDIX K
	1-218

	Page 127

